
CCASM 2006.2
 User's Guide

6809/6309 Cross Assembler for 32-bit Windows
Copyright (C) 2002-2006 by Roger Taylor Software

All Rights Reserved

and

 HD63B09EP Technical Reference Guide

Distributed by:
http://www.coco3.com

The TRS-80/Tandy Color Computer Resource Site

1

2

Table of Contents

Introduction .. 2
For Beginners ... 2
For Experts ... 3

Summary of Features ... 3
Terms Used In This Guide ... 3
Command Options ... 4
The CPU Registers ... 5

6809 Registers .. 5
6309-Only Registers .. 5

Source Code Format .. 6
Source Code Lines .. 6

Labels and Symbols ... 7
Standard Labels .. 7
Local Labels ... 7
Branch Points ... 8

Psuedo-Ops and Directives ... 9
Conditional Assembly .. 10

Mnemonics ... 11
Loading & Moving Data Around ... 11
Comparing, Testing, and Clearing ... 11
Saving and Restoring Registers on the Stacks 12
Doing Arithmetic .. 12
Moving Around Within Your Programs 12
Doing Bit-Based Operations ... 13
Operating Between Registers ... 13
Handling Interrupts .. 13
Unconditional Relative Branches ... 14
Conditional Relative Branches .. 14

Operands ... 15
When a Direct Value Is Expected ... 15
When Memory Access Is Expected ... 15
When a String or Character Is Expected 15
Indexed Memory ... 16

Expressions .. 17
Operations ... 17
Comparisons .. 17
Order Of Operations .. 17
Expression Examples ... 18

Structures, Unions, and Namespaces ... 19
Structures .. 19
Unions ... 20
Namespaces ... 20

3

Table of Contents (cont.)

Procedures ... 22
Declaring Procedures ... 22
Calling Procedures ... 23
Inside of Procedures .. 24
Accessing Procedure Parameters ... 25
Local Variables .. 25
Activation Records ... 26

Instruction Examples ... 27
6809 Examples ... 27
6309 Examples ... 28
Sample Program ... 29

File Formats ... 31
Multi-Record File Format .. 31
Single-Record File Format .. 31
No Records File Format .. 31

6809 Opcode Summary ... 33
Hexidecimal, Binary, and Decimal Conversions 36

4

Introduction

CCASM is a Windows-based 6809/6309 machine language cross-assembler created
with TRS-80 Color Computer and Vectrex users in mind. The command is issuable
from any console prompt, batch file, another program, etc. Specifying a source
code file and some optional parameters, your programs can be quickly assembled
and ready to run on any 6809 or 6309-based computer. For CoCo users, most
Tandy EDTASM source code can be assembled without any modifications.

For Beginners

If you've never worked with assembly, many examples are given in this guide and
the included source code files for helping you learn how to accomplish common
tasks. Once you start putting together small routines and programs, there's no limit
to what can be created. Learn the language first and your programming style will
build over time.

Ofcourse, there's no certain style required to create great ML programs. CCASM
also offers high-level functions to help take the pain away from writing raw
assembly programs.

For Experts

You're definately not limited to assembling just EDTASM-compatible source code.
Many other powerful psuedo-ops, directives, and instructions are available which will
help you create programs that can be bigger, faster, and easier to build.

You have the leisure of namespaces, structures, procedures, procedure libraries and
more, allowing you to create much more powerful programs in less time than it
would take using a bare-bones assembler.

As CCASM advances, more options, features, and high-level structures will be added
making it one of the most powerful 6809/6309 assemblers available.

5

Summary of Features

program type: 32-bit Windows command prompt
target systems for assembled code: Tandy CoCo 1,2,3; Vectrex, and any 6809
or 6309-based computer
assembled files: 'LOADM' record format, ROM and ROM-like images
accepted source code formats: Tandy EDTASM and variants
source code file compatibility: CoCo text editors, PC text editors, various LF/CR
support
maximum source code lines: 32,768
maximum nested include levels: virtually unlimited
assembly passes: 2
nested conditional assembly: yes
expression evaluator: unlimited nesting, logical operations
structures: yes
procedures: yes, nesting & local variable support

Terms Used In This Guide

white space (TABs or SPACEs between source code line fields)
symbol/label (alpha-numeric name that translates into a value or address)
mnemonic (CPU instruction not including any operand)
operand (data used by the mnemonic to form the instruction)
conditional assembly (code segments assembled only if a case is true or false)
PC (the CPU's program counter register)
reg. (CPU register/accumulator/pointer)
expression (a way of specifying a simplified or mathematical value)
void (reserved but uninitialized memory)
word (2-byte/16-bit data)
dword (4-byte/32-bit data)
MSB (most-significant byte, leftmost as in MSB/LSB, lower memory address)
LSB (least-significant byte, rightmost as in MSB/LSB, higher memory address)
MSBit (most-significant bit, leftmost as in bbbbbbbb)
LSBit (least-significant bit, rightmost as in bbbbbbbb)
Boolean (0 means False and <>0 means True)
data structure (related group of data objects)

6

Command Options

-l [dump assembly listing]
-s [dump symbols]
-sa [dump extended symbols and structures]
-sa [dump symbols, including automatic & local labels]
-o= [override default filename for binary output]
-bin [assemble as Tandy CoCo 'LOADM/EXEC' file (default)]
-sr [assemble as single-record file having only one origin]
-nr [assemble with no origin records]
-s19 [assemble as s-record object file]
-rom{=} [assemble as ROM image of 2k,4k,{8k},16,32,64,128,256]
-h [show help messages along with any errors]
-d [show debug messages]
-z [internal debug listing]
-e [allow EDTASM .operators.]
-de= [filename for error reporting]
-q [quiet mode]
-v [hide title]
-os9 [output as OS-9 module – NOT AVAILABLE YET]

Example of the -o option

cm array -o=array.sys
(assemble array.asm to array.sys)

Examples of the -rom option

cm mygame -rom
(assemble mygame.asm to mygame.rom of exactly 8192 bytes)

cm newbasic -rom=32k
(assemble newbasic.asm to newbasic.rom of exactly 32768 bytes)

ROM image files are pure data and are compatible with all or most EPROM-burning
software, even if you need to rename the files so they will load into your utility.

Example of the -l option

cm mygame -l >listing.txt
(assemble mygame.asm to mygame.bin and send a listing to the file "listing.txt")

Example of the -s option

cm pacman -s
(assemble pacman.asm to pacman.bin and dump the symbol table to the screen)

7

The CPU Registers

6809 Registers

a [8-bit accumulator]
b [8-bit accumulator]
d [16-bit concatenated register of a/b]
x [16-bit pointer]
y [16-bit pointer]
u [User Stack or 16-bit pointer]
s [System Stack or 16-bit pointer]
dp [Direct-Page Register]
pc [16-bit Program Counter]
cc [8-bit CPU condition-code register {E-F-H-I-N-Z-V-C}]

cc flags:
E [Entire State on stack - determines RTI action]
F [Fast Interrupt mask - set to enable FIRQ-to-CPU]
H [Half Carry - carry out of bit 3 of arithmetic data]
I [IRQ interrupt mask - set to enable IRQ-to-CPU]
N [Negative Code - automatically set if result is negative]
Z [Zero Code - set if result is zero]
V [Overflow Code - set for arithmetic overflow]
C [Carry Code - set for math carries and borrows]

6309-Only Registers

The 6309 CPU has all of the 6809 registers, plus:

e [8-bit accumulator]
f [8-bit accumulator]
w [16-bit concatenated reg. of e/f]
q [32-bit concatentated reg. of a/b/e/f]
v [16-bit accumulator] *
z [Zero reg.]*
0 [Zero reg.] *
00 [alternate Zero reg.] **
md [Mode/Error reg.]

Note that register names are case-insensitive, meaning a is the same as A, and x is
the same as X, etc.
* used by inter-register instructions only
** there are two Zero registers in the 6309 CPU

8

Source Code Format

A variety of white space methods may be used in your source code. An intelligent
parsing routine is used for breaking source code lines down into the fields used to
build each instruction. CCASM will generate an error if the required line format is not
met or if the combined fields do not form a valid function.

Source code lines:

1) are separated into fields by SPACEs or TABs
2) can optionally have a line number in the first field
3) can optionally have a label in the first field (second field if a line number is
present)
4) must have a SPACE or TAB before all mnemonics, psuedo-ops, and trailing
comments.

The following examples show the typical layout of any given source code line. The
'-' character represents a SPACE or TAB used to separate fields.

Label-Mnemonic-Operand-Comment
Label-Mnemonic--Comment
Label-Mnemonic
-Mnemonic-Operand
-Mnemonic--Comment
LineNumber-Label-Mnemonic-Operand-Comment
LineNumber--Mnemonic-Operand-Comment

A TAB-formatted line might look like this:

start jsr subroutine this is a comment

Or, since line numbers are supported:

00010 start jsr subroutine this is a comment

A SPACE-formatted line might look like this:

00010 start jsr subroutine ;this is a comment

9

Labels and Symbols

Label and symbol names:

1)should generally be kept under 32 character long
2) should not be named the same as any reserved symbol
3) should not contain any mathematical characters or names used by the expression
evaluator

Although the CCASM preference is to use lowercase-oriented source code, capitol
letters are welcome if that is what you prefer. However, symbol names are case-
sensitive. In other words, the symbol "color" is not the same as the symbol "Color".

Automatic Symbols

The following symbols and their values are automatically set by the assembler.

 * [returns the address of the Program Counter]
 . [returns the offset into the operand]
 sizeof{struct} [returns the size of a data structure]

Standard Labels:

 jmp label
 bsr some_routine

Local Labels:

Local labels are resusable labels containing at least one '@' character or '?' character
and generally kept short. Local labels may be used to save symbol table space or to
avoid having to think of many unique label names in large programs.

You can reuse the same local label name many times as long as a blank line
separates them. This scheme can be pictured as local blocks of source code, each
possibly containing local labels used in other blocks. Local blocks cannot access
local labels used in other blocks.

 lbra a@
 bra ?b
 jmp @@exit

10

Branch Points:

Branch Points are very similar to local labels but they are much more efficient and
easier to type. They can also save you lots of time thinking of named labels.

Using the single-character label called '!', you can branch forward and backward in
your source code to the nearest Branch Point. Debugging your programs can be
more difficult if you use too many Branch Points; therefore, they are best for short
code segments.

bra < branch backward to nearest Branch Point label
bra > branch forward to nearest Branch Point label

example:

! lda ,x+ grab a byte from table
bne < branch upwards to last “!” label
bra > branch downwards to next “!” label
nop

! rts exit

11

Psuedo-Ops and Directives

The following list of assembler commands are used in the mnemonic/operand fields
just like regular instructions, only they generate data or perform special assembler
functions; they do not automatically create CPU instructions.

title {string} [set the title of the source code]
org {address} [set/change program origin address]
include {filename[.asm]} [insert/include another source file at the current line]
includebin {filename[.bin]} [insert any file into the codestream]
proc {parameter:type,parameter:type...} [define a procedure]
call {procedure,param1,param2,param3...} [call a procedure]
namespace {label} [causes {label} to prefix to all subsequent labels]
endnamespace [end all namespaces in effect]
struct [start a data structure containing fields]
endstruct [end a structure]
union [start a union structure where the PC doesn't advance per object]
endunion [end a union structure]
page [inject a FORM-FEED character into the assembly listing]
setdp {0-255} [inform the assembler of the Direct Page register value]
{label} equ {expression} [assign a value to a label, becoming a symbol]
{label} = {expression} [assign a value to a label, becoming a symbol]
{label} set {expression} [reassign a value to a label, becoming a symbol]
even [align the PC on an even address]
odd [align the PC on an odd address]
align [align the PC on any boundary]
fcc {"string"} [form constant character string]
fcn {"string"} [form null-terminated string, adds (0) to end]
fcs {"string"} [form sign-terminated string, sets bit 7 of last character]
fcr {"string"} [form carriage-return/null-terminated string, adds 13,0 to end]
fcb {value,expression...} [form constant byte, 8-bit data]
fdb {value,expression...} [form double-byte/word/16-bit data]
fqb {value,expression...} [form quad-byte/dword/32-bit data]
fzb/rzb {number of cleared bytes} [form # of initialized byte(s)]
fzd/rzd {number of cleared words} [form # of initialized double-byte(s)]
fzq/rzq {number of cleared dwords} [form # of initialized quad-byte(s)]
rmb {number of voided bytes} [reserved memory, creates void]
rmd {number of voided words} [reserved memory, creates void]
rmq {number of voided dwords} [reserved memory, creates void]
end {address} [marks the end of assembly, used only once in master source file]

12

Conditional Assembly

Source lines between a condition test and an end condition statement are
assembled only if the condition is true.

if {boolean expression} [start conditional assembly segment if condition=true]
ifeq [assemble segment if expression evaluates to zero]
ifne [assemble segment if expression evaluates to nonzero]
iflt [assemble segment if expression yields a negative result]
ifgt [assemble segment if expression yields a positive result]
ifle [assemble segment if expression yields a negative or zero result]
ifge [assemble segment if expression yields a positive or zero result]
cond {boolean expression} [start conditional assembly segment if result=true]
ifp1 [assemble source segment only if in assembly pass #1]
ifp2 [assemble source segment only if in assembly pass #2]
endif {end an if conditional assembly segment]
endc [end a cond conditional assembly segment]
endp [end an ifp1/ifp2 conditional assembly segment]

Important notes: Make sure all symbols to be used in conditional assembly
expressions are predefined. Forward references are not supported within
conditional assembly expressions. Nesting is supported up to 32 levels (virtually
unlimited). Also… COMMENTS are NOT ALLOWED on the same line as a conditional
statement, like so:

if coco.equ.3 this comment is not allowed
endif

13

Mnemonics

All legal 6809 mnemonics are supported by the 6309 CPU. Mnemonics and registers
in italics are supported only by the 6309 CPU.

Loading & Moving Data Around

ld{a,b,d,x,y,u,s,e,f,w,q,md} {memory,value} [load data into a reg.]
st{a,b,d,x,y,u,s,e,f,q,w} {memory} [store reg. contents to mem.]
ldbt {a,b} , {source bit} , {dest. bit} , {DP mem.} [transfer mem. bit into reg.
bit]
stbt {a,b} , {source bit} , {dest. bit} , {DP mem.} [transfer reg. bit into mem.
bit]
band {a,b} , {source bit} , {dest. bit} , {DP mem.} [AND mem. bit into reg.]
biand {a,b} , {source bit} , {dest. bit} , {DP mem.} [AND complemented mem.
bit into reg.]
bor {a,b} , {source bit} , {dest. bit} , {DP mem.} [OR mem. bit into reg.]
bior {a,b} , {source bit} , {dest. bit} , {DP mem.} [OR complemented mem. bit
into reg.]
beor {a,b} , {source bit} , {dest. bit} , {DP mem.} [EOR mem. bit into reg.]
bieor {a,b} , {source bit} , {dest. bit} , {DP mem.} [EOR complemented mem.
bit into reg.]

copy {source reg.,destination reg.} [copy block of memory to another address]
copy- {source reg.,destination reg.} [copy block of memory in reverse]
imp {source reg.,destination reg.} [implode block of memory into one address]
exp {source reg.,destination reg.} [expand target into block of memory]
tfrp [same as copy] *
tfrm [same as copy-] *
tfrs [same as imp] *
tfrr [same as exp] *

* Used by the "EDTASM6309" assembler created by Robert Gault.
** The HD63B09EP Reference Guide by Chet Simpson and Alan Dekok mentions a
single mnemonic not used in CCASM, called "TFM" for doing memory block
operations. TFM R,R+ translates into exp r,r; TFM R+,R translates into imp r,r;
TFM R-,R- translates into copy- r,r; and TFM R+,R+ translates into copy r,r.

Comparing, Testing, And Clearing

clr{a,b,d,e,f,w} [clear register]
clr {memory,index} [clear byte at memory location]
tst{a,b,d,e,f,w} [test the target reg., setting reg. cc]
tst {memory} [test the target memory, setting reg. cc]
bit{a,b,d,md} {memory,value} [test target bits with bits of a reg.]
cmp{a,b,d,x,y,u,s,e,f,w} [compare a reg. with memory data]

14

Saving And Restoring Registers On The Stacks

pshs {register list} [push registers onto System stack}
puls {register list} [pull registers from System stack}
pshu {register list} [push registers onto User stack}
pulu {register list} [pull registers from User stack}
pshsw [push reg. w onto System Stack]
pulsw [pull reg. w register from System stack]
pshuw [push reg. w onto User stack]
puluw [pull reg. w from User stack]

Doing Arithmetic

abx [add reg. b to reg. x]
add{a,b,d,e,f,w} {memory,value} [add memory to reg.]
sub{a,b,d,e,f,w} {memory,value} [subtract target from reg.]
adc{a,b,d} {memory,value} [add memory plus carry to reg.]
sbc{a,b,d} {memory,value} [subtract target & carry from reg.]
daa [decimal-adjust contents of reg. a]
mul [multiply reg. a by reg. b, becoming reg. d]
muld {memory,value} [multiply d * operand, becoming d]
divd {memory,value} [divide register d by target, becoming d]
divq [divide register q by target]
inc{a,b,d,e,f,w} [increment (add 1) to reg.]
inc {memory} [increment memory]
dec{a,b,d,e,f,w} [decrement (subtract 1 from) reg.]
dec {memory} [decrement byte at memory location]
neg{a,b,d} [negate (2's complement) a reg.]
neg {memory} [negate the target]
sexw [sign-extend reg. w (bit 15) into reg. d]
sex [sign-extend reg. b (bit 7) into reg. a]
asr{a,b,d} [shift reg. bits to the right, retaining sign bit]
asr {memory} [shift memory bits to the right, retaining sign bit]
asl{a,b,d} [shift reg. bits to the left, filling LSBit with zero]
asl {memory} [shift memory bits to the left, filling LSBit with zero]

Moving Around Within Your Programs

jmp {memory} [jmp to a direct/indirect address]
jsr {memory} [jump to a direct/indirect subroutine]
rts [return from subroutine (jsr or bsr); same as puls pc]
rti [return from interrupt (CPU- or swi-generated interrupt]
nop [no operation, code that does nothing]

15

Doing Bit-Based Operations

com{a,b,d,e,f,w} [1's-complement a CPU reg.]
com {memory} [1's-complement a byte of memory]
and{a,b,cc,d} {memory,value} [logical AND of memory bits with a reg.]
or{a,b,cc,d} {memory,value} [OR the bits of the target byte into a reg.]
eor{a,b,d} {memory,value} [exclusive OR of target memory bits with reg.}
rol{a,b,d,w} [rotate reg. bits to the left, filling LSBit with Carry]
rol {memory} [rotate memory bits to the left, filling LSBit with Carry]
ror{a,b,d,w} [rotate reg. bits to the right, filling MSBit with Carry]
ror {memory} [rotate memory bits to the right, filling MSBit with Carry]
lsl{a,b,d} [logical shift reg. bits to the left, filling LSBit with zero]
lsl {memory} [logical shift memory bits to the left, filling LSBit with zero]
lsr{a,b,d,w} [logical shift reg. bits to the right, filling MSBit with zero]
lsr {memory} [logical shift memory bits to the right, filling MSBit with zero]
aim {value;memory} [AND the bits of the value with the bits of the memory byte]
eim {value;memory} [EOR/XOR the bits of the value with the bits of the memory
byte]
oim {value;memory} [OR the bits of the value with the bits of the memory byte]
tim {value;memory} [TEST the bits of the value with the bits of the memory byte]

Operating Between Two Registers

exg {reg.,reg.} [exchange contents of two registers]
tfr {src. reg.,dest. reg.} [transfer src. reg. into dest. reg.]
lea{x,y,u,s} {offset,pointer} [load effective address]
adcr {source reg,destination reg} [add source reg. plus carry to destination reg.]
addr {source reg,destination reg} [add source reg. to destination reg.]
andr {source reg,destination reg} [AND of source reg. with the destination reg.]
cmpr {source reg,destination reg} [compare source reg. with destination reg.]
eorr {source reg,destination reg} [Exclusive OR of source reg. with destination
reg.]
orr {source reg,destination reg} [OR of source reg. with destination reg.]
sbcr {source reg,destination reg} [subtract source reg. and carry from dest. reg.]
subr {source reg,destination reg} [subtract source reg. from destination reg.]

Handling Interrupts

cwai {#byte} [clear and wait for interrupt]
swi{2,3} [software (manual) interrupt types 2 and 3]
swi [software interrupt type 1]
sync [synchronize to interrupt]

16

Unconditional Relative Branches (always performed)

bra {address} [branch]
lbra {address} [long branch]
brn {address} [branch never]
lbrn {address} [long branch never]
bsr {address} [branch to a subroutine]
lbsr {address} [long branch to a subroutine]

Conditional Relative Branches based on (reg. cc) flags

bhs {address} [branch if higher or same, C=0] unsigned
lbhs {address} [long branch if higher or same, C=0] unsigned
blo {address} [branch if lower, C=1] unsigned
lblo {address} [long branch if lower, C=1] unsigned
bhi {address} [branch if higher] unsigned
lbhi {address} [long branch if higher] unsigned
bls {address} [branch if less than or same] unsigned
lbls {address} [long branch if less than or same] unsigned
blt {address} [branch if less than, N XOR V=1] signed
lblt {address} [long branch if less than, N XOR V=1] signed
ble {address} [branch if less than or equal, Z=1 or N XOR V=1] signed
lble {address} [long branch if less than or equal] signed
bgt {address} [branch if greater than, N XOR V=0] signed
lbgt {address} [long branch if greater than, N XOR V=0] signed
bge {address} [branch if greater than or equal, Z=1 or N XOR V=0] signed
lbge {address} [long branch if greater than or equal to] signed

Branches based on a CPU Condition Code

bne {address} [branch if not equal] Z=0
lbne {address} [long branch if not equal] Z=0
beq {address} [branch if equal] Z=1
lbeq {address} [long branch if equal] Z=1
bcc {address} [branch if carry is clear] C=0
lbcc {address} [long branch if carry is clear] C=0
bcs {address} [branch if carry is set] C=1
lbcs {address} [long branch if carry is set] C=1
bmi {address} [branch if minus] N=1
lbmi {address} [long branch if minus] N=1
bpl {address} [branch if plus] N=0
lbpl {address} [long branch if plus] N=0
bvc {address} [branch if no overflow] V=0
lbvc {address} [long branch if no overflow] V=0
bvs {address} [branch if overflow] V=1
lbvs {address} [long branch if overflow] V=1

17

Operands

When a direct value is expected by an instruction

#%010101 [binary value]
#100 [decimal value]
#$7F [hexidecimal value]
#symbol_name [use symbol's equate]
#expression

When memory access is expected

%address [binary address]
$address [hexidecimal address]
symbol_name [use symbol's equate]
address [decimal address]
<address [LSB of address, reg. dp is the MSB]
>address [full 16-bit address]

When a string or character is expected

“a string”
/a string/
'c a character
'b' a character

18

Indexed memory

 ,{x,y,u,s,pc,w} (access memory pointed to by reg.)
 [,{x,y,u,s,pc,w}] (indirect access)
 {a,b,d,e,f,w},{x,y,u,s,pc,w}
 [address] (indirect address)
 offset,{x,y,u,s,pc,w} (use 5-bit offset from pointer if possible)
 <offset,{x,y,u,s,pc,w} (force 8-bit offset from pointer if possible)
 >offset,{x,y,u,s,pc,w} (force 16-bit offset from pointer if possible)

typical examples of indexed memory access:

 ,x offset,x ,x+ ,x++ ,-x ,--x
 a,x b,x d,x e,x f,x w,x
 ,y offset,y ,y+ ,y++ ,-y ,--y
 a,y b,y d,y e,y f,y w,y
 ,u offset,u ,u+ ,u++ ,-u ,--u
 a,u b,u d,u e,u f,u w,u
 ,s offset,s ,s+ ,s++ ,-s ,--s
 a,s b,s d,s e,s f,s w,s
 ,w offset,w ,w++,--w ,pc offset,pc
 [,x] [offset,x] [,x++] [,--x]
 [a,x] [b,x] [d,x] [e,x] [f,x] [w,x]
 [,y] [offset,y] [,y++] [,--y]
 [a,y] [b,y] [d,y] [e,y] [f,y] [w,y]
 [,u] [offset,u] [,u++] [,--u]
 [a,u] [b,u] [d,u] [e,u] [f,u] [w,u]
 [,s] [offset,s] [,s++] [,--s]
 [a,s] [b,s] [d,s] [e,s] [f,s] [w,s]
 [,w] [offset,w] [,w++] [,--w] [,pc] [offset,pc]

Indexed memory using 6309 AIM, TIM, EIM, OIM instructions

#100;5,x
#65;a,y

19

Expressions

Values, offsets, addresses, and any other type of parameter may be defined as
simple or complex mathematical expressions.

Operators

* [multiply]
/ [divide]
% [modulas]
+ [add] (also unary)
- [subtract] (also unary)
^ [1's complement, logical NOT] (also unary)
& [logical AND]
! [logical OR]
| [logical OR]
~ [logical Exclusive OR]

Comparisons

The result of these operations will be of the Boolean type (either 0 for False or 1 for
True). You compare mathematical expressions on either side of the operation, and
get a True or False result.

= [is equal to]
< [is less than]
> [is greater than]
< [is less than or equal to]
> [is greater than or equal to]
<> [is not equal to]

Order Of Operations

1) parenthesis (innermost (first))
2) unaries (like '-', '+', and '^')
2) multiplies and divides (*, /, %)
3) adds and subtracts (+, -)
4) logical operations (&, !, ~, ^)
5) comparisons (=, <, >, <>, <=, >=)

You can always use parenthesis to control the order or to enhance the clarity of an
expression.

20

Expression Examples

-64
+101
100+5
-symbol_5
$2000+$100
$3120-$ab
-255<=254
timercount>3600
symbol=anothersymbol
label<>anotherlabel
^255
label_c+^5
^symbol [return 1's complement of "symbol"]
port!enableDAC [return both values OR'ed into one value]
sample&%11111100 [mask out the lower 2 bits of "sample"]
%11111%%1000 [1st binary value modulas the 2nd binary value)
50*4/2
1+2*(3+4)+5 ; notice the order of operations (1 + 2*7 + 5 = 20)
(1024+32)*15+31
(52-2)*2
+-5
-(+5)
-100/5*2 ; automatically orders as -(100/(5*2))
100+-100/10
apple+200/2 ; return ("apple" plus 100)
1*2+3*4+5*6
-254<=255
1000>-1000
-2000>2000
true&true ; returns true if both cases are true
true&false
false&true
false&false
true!true ; returns true if either case is true
true!false
false!true
false!false

See the Portal-9 or Rainbow IDE ‘TESTS’ project for many more examples of
CCASM's powerful expression evaluator.

21

Structures, Unions, and Namespaces

Structures

A CCASM structure is a segment of data or code separated into fields or offsets from
the structure beginning. By using the format "structurename.structurefield" you can
access any field of any structure. These fields translate into their own offset from
the beginning of the structure.

An example of a simple structure is:

color struct
red rmb 1
green rmb 1
blue rmb 1

ends

To access the "green" field, you would reference the symbol "color.green".

Database applications can rely heavily on structures. Using pointers to objects, you
can access records by name and field fairly easily in a large table or database.
Because each structure field is an offset, it can be used as the offset for indexed
memory instructions or anywhere else an offset is expected.

ldx #colors start of database memory
ldy #256 records in database

a@ lda color.green,x load "green" field of this record
ldb color.blue,xload "blue" field of this record
lde color.red,x load "red" field of this record
jsr plot
leax 3,x point to next record (skip structure size)
leay -1,y
bne a@

To automatically compute the size of a structure, use the following compile-time
symbol:

example:
ldy #sizeof{color}
ldx #sizeof{transaction}

22

To declare a structure that inherits the fields of another structure, and possibly
appends new fields to the new structure, the following syntax is used:

apple structfruit
diameter rmb 1

ends
To generate data in the code stream (like FCB, FDB, FCC, etc. does) based on a
structure, use the syntax:

label apple

The label is required, and the mnemonic (psuedo-op) is whatever the structure
name is. The above example generates initialized data the size of the source
structure (apple).

Note that label inherits all of apple's structure fields. You can now directly access
this data area using direct and exctended addressing.

start lda label.diameter actual address of field

23

Unions

A union structure allows overlapping objects or data fields. The program counter
does not advance as usual inside of a union structure for each object. The total size
of a union is the size of the largest object in the union. Ending a union causes the
program counter to advance by the size of the union (the largest object inside).

variant union
byte rmb 1
word rmb 2

endu

To automatically compute the size of a union, use the following compile-time
symbol:

example:
ldy #sizeof{variant}

It's beyond the scope of this document to go into detail about all of the uses for
union structures, but several uses will be mentioned briefly.

1)allows variable name aliasing
2)allows the reuse of variable memory by placing all union symbols at the same PC

address
3)allows different data types to exist at the same location

A named union inside of a parent structure will cause all of its fields to take on the
form parent_structure.union_name.union_field. You may optionally wish to use
another method for accessing the union.

CCASM also supports anonymous unions. Anonymous (unnamed) unions must be
declared within a structure. Because the union resides inside of a named structure,
no name for the union is required. The resulting dot notation name for the union
fields will be parent_structure.union_field.

Namespaces

Using the namespace directive, a constant prefix label will be assigned to all
subsequent labels; thus, allowing composite labels to be formed. This feature might
come in handy more when you are attempting to merge or include foreign source
code into your programs.

foo namespace
start rts

endname close namespace

jmp foo.start

24

Procedures

Introduction to CCASM Procedures

Procedures in assembly language? Ofcourse! You can create procedures that use
formal parameters, then call your procedures along with the required parameters.
Code generation and stack management is handled automatically.

Procedures are declared using the proc/begin/endproc directives. The proc
directive is required to name the procedure and list the required parameters and
their types. Procedures are ended using the endproc directive.

Declaring Procedures

fillmem proc top:word,length:word,filler:byte
begin fillmem
ldx top,u get parameter
ldy length,u get parameter
lda filler,u get parameter

a@ sta ,x+
leay -1,y
bne a@
endproc

The first required field is the procedure name ('fillmen' in this example). The second
field (always called proc) is also required. The third field is optional and lists any
parameters required by the procedure. Procedures do not have to have parameters.
Then why use a procedure instead of the jsr instruction? Procedures can reserve
local named variables on the stack automatically. This helps isolate your procedures
or subroutines from the rest of the program.

The begin directive marks the entry point into your procedure. This allows static
and local memory to be reserved between the proc and begin directives. Static
memory will be placed at the current program counter inside of the procedure while
local memory gets allocated on the stack at run-time. The code for this is
generated automatically by the assembler.

You define formal parameters by listing any number of symbol names along with
their types (such as byte, word, dword, int8, int16, etc.). The format is
symbol:type,symbol:type,... for as many parameters as you need.

Note: No spaces are allowed in a procedures's parameter list.

The following parameter list defines 5 bytes used by the procedure, composed of
two 16-bit values and one 8-bit value.

top:word,length:word,filler:byte

25

Calling Procedures

After defining a procedure, it's ready to call using the call function. When you call a
procedure, you must pass the same number of parameters into the procedure that
are defined in the formal parameter list. However, the names or values you pass in
are separate (outside) objects. This information is copied into the formal parameter
names used only by the procedure.

Here's an example of how we would call the fillmem procedure:

org 3584

start call fillmem,1024,512,128
rts

end start

Here's what happens when the call function is invoked:

First, the supplied actual parameters (1024, 512, 128) are pushed onto the S stack
starting from the last parameter (128) and ending with the first parameter (1024).
The above example pushes the following parameters onto the S stack in the order of
byte, word, word. The parameters are pushed onto the S stack automatically (at
run-time) using code generated by the assembler (at compile-time).

The parameter values that are pushed onto the S stack occupy the same number of
bytes as the formal parameter's type states. If you try to pass in a 16-bit value for
an 8-bit formal parameter, only the LSB of the parameter will be passed to the
procedure.

26

Inside of Procedures

So, what goes on inside of a procedure? The quick answer is: anything you like!
The other answer explains what is generated by the assembler to make the
procedure do what it is supposed to do.

First there is a small bit of automatic code that finishes creating the procedure's
activation record (stack frame).

The previous activation record pointer (,U) is pushed to the S stack, then the
current value of the S stack is copied to the U register so that parameters and local
memory can be accessed as offsets from ,U. This is the base address of the
procedure's activation record. Parameters are accessed from positive sides of ,U
while local memory is accessed from negative sides of ,U. As long as we preserve
the U register during the procedure, everything is ok. However, if there's no
parameters or local variables, you can use U for whatever you like.

Now the S stack is moved down in memory one byte for each byte of local memory
required by the procedure. This stack adjustment is done using one instruction
which subtracts the total local memory requirement from the value of the S stack.

Inside of a procedure, the current location of the S stack base is not that important.
In other words, since ,U now points to the activation record which also holds
information used to restore the S stack to where it was before the procedure call,
you can use S to play around with some. However, be careful not to destroy
anything on the plus side of the stack since there's likely to be an activation record
(or more) sitting there at any given time.

At this time, there is currently no “display”. All labels and symbols are local to the
procedure, meaning you can't access any symbols that were defined outside of the
procedure.

27

Accessing Procedure Parameters

You can access the parameters that the call function passed in by using the
following syntax:

lda parameter1,u normal
ldd parameter2,u normal
ldx [parameter3,u] indirect (pass-by-reference support)
lda parameter1+1,u offset of parameter + 1

Simple enough, all procedure parameters are accessed as offsets from the U
register. That is, the parameter values are pushed onto the S stack before the
procedure is called, then the U register is pointed to this base pointer of the S stack.

The assembler automatically computes parameter offsets, so you don't have to
really worry too much about where your data is on the stack. Just use the formal
parameter name (defined in the procedure declaration) and append the “,U” indexed
register.

You can also place static data (RMBs, FCB's, FCC's, etc.) inside of your procedures.

Local Variables

You can reserve local variables inside of a procedure by using the var directive, like
so:

fillmem proc start:word,length:word,filler:byte
aa var 1 reserve 1 byte of local memory
bb var 2 reserve 2 bytes of local memory

begin fillmem
...
lda aa,u access local mem
ldd bb,u access local mem
endproc

You access local variables the same way you access procedure parameters, using
the ,U indexing mode. Local memory is accessed on the negative side of ,U while
parameters are accessed on the positive side of ,U. For example:

lda local,u translates to lda -offset,u
lda param,u translates to lda offset,u

The offsets for both parameters and local variables are automatically computed at
compile-time. These offsets into the procedure's activation record will be explained
next.

28

Procedure Activation Records

Every procedure has an activation record that is created at run-time and stored on
the S stack. The code for creating the activation record is generated by the
assembler automatically, based on a procedure's optional parameters and local
variables, etc. A procedure with both parameters and local variables will have an
activation record similar to the one below. Note that {address} is given as an
example of where the S stack was originally at (32768) before the procedure call.

Local Variable 2 (MSB) {32759} +0,s -3,u

Local Variable 2 (LSB) {32760} +1,s -2,u

Local Variable 1 (byte) {32761} +2,s -1,u

Register U MSB {32762} +3,s <-- Record Base (,u)

Register U LSB {32763} +4,s 1,u

Program Counter MSB {32764} +5,s 2,u

Program Counter LSB {32765} +6,s 3,u

Parameter2 (LEVEL) {32766} +7,s 4,u

Parameter1 (COLOR) {32767} +8,s 5,u

A procedure having parameters but no local variables will have an activation record
similar to the one below.

Register U MSB {32762} +0,s <-- Record Base (,u)

Register U LSB {32763} +1,s 1,u

Program Counter MSB {32764} +2,s 2,u

Program Counter LSB {32765} +3,s 3,u

Parameter2 (LEVEL) {32766} +4,s 4,u

Parameter1 (COLOR) {32767} +5,s 5,u

A procedure having no parameters and no local variables will have an activation
record similar to the one below. Note that this is basically a pointless activation
record unless you plan to do some manual allocation of local memory, etc. by
adjusting the S stack yourself from within the procedure.

Register U MSB {32762} +0,s <-- Record Base (,u)

Register U LSB {32763} +1,s 1,u

Program Counter MSB {32764} +2,s 2,u

Program Counter LSB {32765} +3,s 3,u

29

Instruction Examples

6809 Examples

orcc #80 [disable IRQ and FIRQ interrupts]
andcc #175 [enable IRQ and FIRQ interrupts]
orcc #%00000001 [manually set the Carry conditon code]
andcc #%11111110 [manually clear the Carry condition code]
pshs x,d [push reg. x, reg. b, and reg. a onto S stack]
puls d,x,pc [pull regs. from stack then simulate an rts]
leay -1,y [subtract 1 from reg. y]
leau 2,x [load reg.x + 2 into reg.u]
leax d,x [reg. x = reg. x + reg. d]
leax table,pc [load relative address of "table" into reg. x]
here equ * ['*' translates into the address where "here" is or will be]
fdb 1024,. ['.' translates into the address of the 2nd operand value]
fcc "this is a basic ASCII string"
fcn "this string automatically gets a NULL added to it!"
fcs "this is a bit7-terminated ASCII string"
fcr "this string automatically gets a CR+NULL added to it"
fcb 1,2,3,4,5 [store 5 8-bit values]
fdb 10,20,30 [store 3 16-bit values]
fqb 5,10,15,20 [store 4 32-bit values]
rmb 200 [reserve/void 200 bytes of memory, for use at run-time]
lda ,x [get data at address pointed to by reg. x]
lda [,x] [get data at address pointed to by address in reg. x]
lda -5,u [get data at 5 bytes above address in reg. u]
adca #0 [add Carry result (0 or 1) into reg. a]
adcb #10 [add Carry result plus 10 into reg. b]
asrb [divide the signed contents of reg. b by 2]
lsrb [divide the unsigned contents of reg. a by 2]
rora [done consecutively, 9-bit right rotation is possible]
rola [9-bit left rotation through the Carry condition code]

30

6309-Only Examples

ldmd #1 [enable full 6309 CPU operation mode]
sexw [converts signed reg. w into signed reg. q]
oim 64;1024 [OR the value 64 into address 1024]
oim 128;,u [OR the value 128 into the memory pointed to by reg. u]
aim 254;2,u [AND the value 254 into offsetted mem. pointed to by reg. u]
aim 191;1024 [AND the value 191 into address 1024]
tim $80;65280 [TEST bit #7 of address 65280]
tim %11;[1000] [TEST bits #0&1 of indirect address 1000]
eim 85;255 [XOR the value 85 into address 255]
bor a,1,7,255 [OR bit #1 in reg. a with bit #7 from address 255]
ldbt a,2,6,200 [load bit #2 in reg. a with bit #6 from address 200]
ldq #98765 [load reg. q with a 32-bit integer]
ldq #$A4B2C3D9 [load reg. q with a 32-bit hex. value]
ldq #%10110010110000111010100011101011 [32-bit binary value]

31

Sample Program

This program prints a message to your Color BASIC screen:

org 16384 run at this address
start leax msg,pcr point to our message
! lda ,x+ get ASCII byte in msg

beq done stop at null byte
jsr [40962] print using BASIC ROM's STDOUT
bra < loop back to "!"

done rts return to BASIC
msg fcn "HELLO WORLD"

end start set BASIC "EXEC" address

This program echos your keystrokes to the Color BASIC screen
 (hit <BREAK> to exit):

org 16384 run at this address
getkey jsr [40960] get key from BASIC ROM's STDIN

tsta is it a NULL character?
beq getkey yes, ignore it
cmpa #3 is it the BREAK key?
beq done2 yes, so exit
jsr [40962] no, so print the char to STDOUT
bra getkey keep checking keys

done2 rts return to BASIC
end getkey set BASIC "EXEC" address

This program clears the Color BASIC screen:

org 16384 run at this address
filler equ $6060 "filler = $6060"
cls ldx #1024 point to top of screen

ldy #512 set # of bytes to clear
ldd #filler use 2 bytes of $60

! std ,x++ clear the 2 characters
leay -2,y subtract them from count
bne < count not 0, so repeat
rts return to BASIC
end cls

32

This example combines the above routines into one program:

org 16384 run at this address
start ldx #1024 point to top of screen

ldy #512 set # of bytes to clear
ldd #$6060 use 2 blank characters

! std ,x++ clear the 2 characters
leay -2,y subtract them from count
bne < go back to "!" until count=0
leax msg,pcr point to our message

! lda ,x+ get ASCII byte in msg
beq getkey stop at null byte
jsr [40962] print using BASIC ROM
bra < loop back to "!"

getkey jsr [40960] get keystroke using BASIC ROM
tsta is it a NULL character?
beq getkey yes, ignore it
cmpa #3 is it the BREAK key?
beq done yes, so exit
jsr [40962] no, so print the character
bra getkey keep checking keys

done rts return to BASIC
msg fcr "HELLO WORLD OF ASSEMBLY"

end start

33

File Formats

Multi-record files:

1) are created automatically based on the structure of your source code
2) can be LOADMed by Disk BASIC or similar loaders
3) have a beginning ORG record defining where the code should loading into RAM
4) have subsequent ORG records causing the loader to jump somewhere else
5) have an END record signifying there are no more records

This type of file can contain sub origins and any mix of voided memory, etc. An
example of a multi-record file would be one that has the ability to load 3 different
programs into 3 different locations of RAM, all done by the loader based on
information found in the embedded records. Another example would be a program
that automatically executes after being loaded, by embedding a small segment of
code that overwrites a system area of Disk BASIC.

Single-record files:

1) are created automatically based on the structure of your source code
2) can be LOADMed by Disk BASIC or similar loaders
3) have a beginning LOAD record defining where the code should loading into RAM
4) have an END record signifying there are no more records

An example of a single-record binary file would be a file created by BASIC after
typing SAVEM "SCREEN",1024,1535,0. The resulting file would 522 bytes long
because a 5-byte LOAD record begins, then 512 bytes of screen data, then a 5-byte
END record.

You can also force a single-record file output (-sr option) which has an additional
effect of translating any RMB statements in your source into initialized data (rather
than voided memory).

Because of the translation of voided memory areas into initialized data, a continuous
stream of code is generated from the first ORG statement to the END statement of
your source code. No other embedded ORG statements should be used in your
source code that will be assembled in single-record format.

34

No-records files:

1) must be force-assembled using the -nr option
2) are similar to ROM images
3) have no beginning or subsequent ORG records
4) have no END record

This type of file can be viewed as a variable-sized ROM image where the file consists
of only program opcode or data and no loader control structures. Such ROM-like
files must be structured correctly before assembly. Multiple ORG statements are
allowed in the source code, but should be used very carefully. No opcode or
initialized data should be placed after any RMB statement in a program to be
assembled in no-records format. In other words, voided memory is not assembled,
because a record is not generated to tell the loader to advance past or load around
any voided memory.

Multiple ORG statments followed by sets of RMBs are generally used for
enumerating variable addresses, etc. Large buffers and uninitialized tables and can
also be reserved this way so long as no opcode or data appears after any RMB
statements. Doing so would cause those stray opcodes to be loaded into
unintended locations in RAM.

35

6809 Opcode Summary
--
|Mnemon.|Op|IHNZVC|IEXD#R|~|Description |Notes |
|-------+--+------+------+-+----------------------+------------|
ABX	3A	------	X	3	Add to Index Register	X=X+B
ADCa s	B9	-*****	XXXXX	5	Add with Carry	a=a+s+C
ADDa s	BB	-*****	XXXXX	5	Add	a=a+s
ADDD s	F3	-*****	XXX*X	7	Add to Double acc.	D=D+s
ANDa s	B4	--**0-	XXXXX	5	Logical AND	a=a&s
ANDCC s	1C	?????1	X	3	Logical AND with CCR	CC=CC&s
ASL d	78	--****	XXX X	7	Arithmetic Shift Left	d=d*2
ASLa	48	--****	X	2	Arithmetic Shift Left	a=a*2
ASR d	77	--****	XXX X	7	Arithmetic Shift Right	d=d/2
ASRa	47	--****	X	2	Arithmetic Shift Right	a=a/2
BCC m	24	------	x	3	Branch if Carry Clear	If C=0
BCS m	25	------	x	3	Branch if Carry Set	If C=1
BEQ m	27	------	x	3	Branch if Equal	If Z=1
BGE m	2C	------	x	3	Branch if Great/Equal	If NxV=0
BGT m	2E	------	x	3	Branch if Greater Than	If Zv{NxV}=0
BHI m	22	------	x	3	Branch if Higher	If CvZ=0
BHS m	24	------	x	3	Branch if Higher/Same	If C=0
BITa s	B5	--**0-	XXXXX	5	Bit Test accumulator	a&s
BLE m	2F	------	x	3	Branch if Less/Equal	If Zv{NxV}=1
BLO m	25	------	x	3	Branch if Lower	If C=1
BLS m	23	------	x	3	Branch if Lower/Same	If CvZ=1
BLT m	2D	------	x	3	Branch if Less Than	If NxV=1
BMI m	2B	------	x	3	Branch if Minus	If N=1
BNE m	26	------	x	3	Branch if Not Equal	If Z=0
BPL m	2A	------	x	3	Branch if Plus	If N=0
BRA m	20	------	x	3	Branch Always	PC=m
BRN m	21	------	x	3	Branch Never	NOP
BSR m	8D	------	x	7	Branch to Subroutine	-[S]=PC,BRA
BVC m	28	------	x	3	Branch if Overflow Clr	If V=0
BVS m	29	------	x	3	Branch if Overflow Set	If V=1
CLR d	7F	--0100	XXX X	7	Clear	d=0
CLRa	4F	--0100	X	2	Clear accumulator	a=0
CMPa s	B1	--****	XXXXX	5	Compare	a-s
CMPD s	B3	--****	XXX*X	8	Compare Double acc.	D-s (10H)
CMPS s	BC	--****	XXX*X	8	Compare Stack pointer	S-s (11H)
CMPU s	B3	--****	XXX*X	8	Compare User stack ptr	U-s (11H)
CMPi s	BC	--****	XXX*X	7	Compare	i-s (Y ~s=8)
COM d	73	--**01	XXX X	2	Complement	d=~d
COMa	43	--**01	X	7	Complement accumulator	a=~a
CWAI n	3C	E?????	X	K	AND CCR, Wait for int.	CC=CC&n,E=1,
DAA	19	--****	X	2	Decimal Adjust Acc.	A=BCD format
DEC d	7A	--***-	XXX X	7	Decrement	d=d-1
DECa	4A	--***-	X	2	Decrement accumulator	a=a-1
EORa s	B8	--**0-	XXXXX	5	Logical Exclusive OR	a=axs
EXG r,r	1E	------	X	8	Exchange (r1 size=r2)	r1<->r2
INC d	7C	--***-	XXX X	7	Increment	d=d+1
INCa	4C	--***-	X	2	Increment accumulator	a=a+1
JMP s	7E	------	XXX X	4	Jump	PC=EAs
--

36

6809 Opcode Summary (cont.)

--
|Mnemon.|Op|IHNZVC|IEXD#R|~|Description |Notes |
|-------+--+------+------+-+----------------------+------------|
JSR s	BD	------	XXX X	8	Jump to Subroutine	-[S]=PC,JMP
LBcc nn	10	------	x	5	Long cond. Branch(~=6)	If cc LBRA
LBRA nn	16	------	x	5	Long Branch Always	PC=nn
LBSR nn	17	------	x	9	Long Branch Subroutine	-[S]=PC,LBRA
LDa s	B6	--**0-	XXXXX	5	Load accumulator	a=s
LDD s	FC	--**0-	XXX*X	6	Load Double acc.	D=s
LDS s	FE	--**0-	XXX*X	7	Load Stack pointer	S=s (10H)
LDU s	FE	--**0-	XXX*X	6	Load User stack ptr	U=s
LDi s	BE	--**0-	XXX*X	6	Load index register	i=s (Y ~s=7)
LEAp s	3X	---i--	xX X	4	Load Effective Address	p=EAs(X=0-3)
LSL d	78	--0***	XXX X	7	Logical Shift Left	d={C,d,0}<-
LSLa	48	--0***	X	2	Logical Shift Left	a={C,a,0}<-
LSR d	74	--0***	XXX X	7	Logical Shift Right	d=->{C,d,0}
LSRa	44	--0***	X	2	Logical Shift Right	d=->{C,d,0}
MUL	3D	---*-*	X	B	Multiply	D=A*B
NEG d	70	-?****	XXX X	7	Negate	d=-d
NEGa	40	-?****	X	2	Negate accumulator	a=-a
NOP	12	------	X	2	No Operation	
ORa s	BA	--**0-	XXXXX	5	Logical inclusive OR	a=avs
ORCC n	1A	??????	X	3	Inclusive OR CCR	CC=CCvn
PSHS r	34	------	X	2	Push reg(s) (not S)	-[S]={r,...}
PSHU r	36	------	X	2	Push reg(s) (not U)	-[U]={r,...}
PULS r	35	??????	X	2	Pull reg(s) (not S)	{r,...}=[S]+
PULU r	37	??????	X	2	Pull reg(s) (not U)	{r,...}=[U]+
ROL d	79	--****	XXX X	7	Rotate Left	d={C,d}<-
ROLa	49	--****	X	2	Rotate Left acc.	a={C,a}<-
ROR d	76	--****	XXX X	7	Rotate Right	d=->{C,d}
RORa	46	--****	X	2	Rotate Right acc.	a=->{C,a}
RTI	3B	-*****	X	6	Return from Interrupt	{regs}=[S]+
RTS	39	------	X	5	Return from Subroutine	PC=[S]+
SBCa s	B2	--****	XXXXX	5	Subtract with Carry	a=a-s-C
SEX	1D	--**--	X	2	Sign Extend	D=B
STa d	B7	--**0-	XXX X	5	Store accumultor	d=a
STD d	FD	--**0-	XXX X	6	Store Double acc.	D=a
STS d	FF	--**0-	XXX X	7	Store Stack pointer	S=a (10H)
STU d	FF	--**0-	XXX X	6	Store User stack ptr	U=a
STi d	BF	--**0-	XXX X	6	Store index register	i=a (Y ~s=7)
SUBa s	B0	--****	XXXXX	5	Subtract	a=a-s
SUBD s	B3	--****	XXX*X	7	Subtract Double acc.	D=D-s
SWI	3F	1-----	X	J	Software Interrupt 1	-[S]={regs}
SWI2	3F	E-----	X	K	Software Interrupt 2	SWI (10H)
SWI3	3F	E-----	X	K	Software Interrupt 3	SWI (11H)
SYNC	13	------	X	2	Sync. to interrupt	(min ~s=2)
TFR r,r	1F	------	X	6	Transfer (r1 size<=r2)	r2=r1
TST s	7D	--**0-	XXX X	7	Test	s
TSTa	4D	--**0-	X	2	Test accumulator	a
--

37

6809 Opcode Summary (cont.)

--
CCR	-*01?			Unaffect/affected/reset/set/unknown
E	E			Entire flag (Bit 7, if set RTI~s=F)
F I	I			FIRQ/IRQ interrupt mask (Bit 6/4)
H	H			Half carry (Bit 5)
N	N			Negative (Bit 3)
Z	Z			Zero (Bit 2)
V	V			Overflow (Bit 1)
C	C			Carry/borrow (Bit 0)
-----------------+------+-------------------------------------				
a	I		Inherent (a=A,Op=4XH, a=B,Op=5XH)	
nn,E	E		Extended (Op=E, ~s=e)	
[nn]	x		Extended indirect	
xx,p!	X		Indexed (Op=E-10H, ~s=e-1)	
[xx,p!]	X		Indexed indirect (p!=p++,--p only)	
n,D	D		Direct (Op=E-20H, ~s=e-1)	
#n	#		Immediate (8-bit, Op=E-30H, ~s=e-3)	
#nn	*		Immediate (16-bit)	
m	x		Relative (PC=PC+2+offset)	
[m]	R		Relative indirect (ditto)	
--------------------------+-----------------------------------				
DIRECT	Direct addressing mode			
EXTEND	Extended addressing mode			
FCB n	Form Constant Byte			
FCC 'string'	Form Constant Characters			
FDB nn	Form Double Byte			
RMB nn	Reserve Memory Bytes			
--------------------------+-----------------------------------				
A B	Accumulators (8-bit)			
CC	Condition Code register (8-bit)			
D	A and B (16-bit, A high, B low)			
DP	Direct Page register (8-bit)			
PC	Program Counter (16-bit)			
S U	System/User stack pointer(16-bit)			
X Y	Index registers (16-bit)			
--------------------------+-----------------------------------				
a	Acc A or B (a=A,Op=BXH, a=B,Op=FXH)			
d s EA	Destination/source/effective addr.			
i p r	Regs X,Y/regs X,Y,S,U/any register			
m	Relative address (-126 to +129)			
n nn	8/16-bit expression(0 to 255/65535)			
xx p!	A,B,D,nn/p+,-p,p++,--p (indexed)			
+ - * /	Add/subtract/multiply/divide			
& ~ v x	AND/NOT/inclusive OR/exclusive OR			
<- -> <->	Rotate left/rotate right/exchange			
[] []+ -[]	Indirect address/increment/decr.			
{ }	Combination of operands			
{regs}	If E {PC,U/S,Y,X,DP,B,A,CC}/{PC,CC}			
(10H) (11H)	Hex opcode to precede main opcode			
--

38

Hexidecimal, Binary, and Decimal Conversions

Use this chart to translate values between the different number types accepted by
CCASM. You can use any number base system you prefer when writing software --
hexidecimal (base 16), binary (base 2), or decimal (base 10).

Hex Bin Dec Neg ASCII

$00 = %00000000 = 0
$01 = %00000001 = 1 = -255
$02 = %00000010 = 2 = -254
$03 = %00000011 = 3 = -253
$04 = %00000100 = 4 = -252
$05 = %00000101 = 5 = -251
$06 = %00000110 = 6 = -250
$07 = %00000111 = 7 = -249 = Bell
$08 = %00001000 = 8 = -248 = Backspace
$09 = %00001001 = 9 = -247 = TAB
$0A = %00001010 = 10 = -246 = Line Feed
$0B = %00001011 = 11 = -245
$0C = %00001100 = 12 = -244 = Form Feed/Clear
$0D = %00001101 = 13 = -243 = Carriage Return
$0E = %00001110 = 14 = -242
$0F = %00001111 = 15 = -241
$10 = %00010000 = 16 = -240
$11 = %00010001 = 17 = -239
$12 = %00010010 = 18 = -238
$13 = %00010011 = 19 = -237
$14 = %00010100 = 20 = -236
$15 = %00010101 = 21 = -235
$16 = %00010110 = 22 = -234
$17 = %00010111 = 23 = -233
$18 = %00011000 = 24 = -232
$19 = %00011001 = 25 = -231
$1A = %00011010 = 26 = -230
$1B = %00011011 = 27 = -229
$1C = %00011100 = 28 = -228
$1D = %00011101 = 29 = -227
$1E = %00011110 = 30 = -226
$1F = %00011111 = 31 = -225
$20 = %00100000 = 32 = -224 = '
$21 = %00100001 = 33 = -223 = '!
$22 = %00100010 = 34 = -222 = '"
$23 = %00100011 = 35 = -221 = '#

39

$24 = %00100100 = 36 = -220 = '$
$25 = %00100101 = 37 = -219 = '%
$26 = %00100110 = 38 = -218 = '&
$27 = %00100111 = 39 = -217 = ''
$28 = %00101000 = 40 = -216 = '(
$29 = %00101001 = 41 = -215 = ')
$2A = %00101010 = 42 = -214 = '*
$2B = %00101011 = 43 = -213 = '+
$2C = %00101100 = 44 = -212 = ',
$2D = %00101101 = 45 = -211 = '-
$2E = %00101110 = 46 = -210 = '.
$2F = %00101111 = 47 = -209 = '/
$30 = %00110000 = 48 = -208 = '0
$31 = %00110001 = 49 = -207 = '1
$32 = %00110010 = 50 = -206 = '2
$33 = %00110011 = 51 = -205 = '3
$34 = %00110100 = 52 = -204 = '4
$35 = %00110101 = 53 = -203 = '5
$36 = %00110110 = 54 = -202 = '6
$37 = %00110111 = 55 = -201 = '7
$38 = %00111000 = 56 = -200 = '8
$39 = %00111001 = 57 = -199 = '9
$3A = %00111010 = 58 = -198 = ':
$3B = %00111011 = 59 = -197 = ';
$3C = %00111100 = 60 = -196 = '<
$3D = %00111101 = 61 = -195 = '=
$3E = %00111110 = 62 = -194 = '>
$3F = %00111111 = 63 = -193 = '?
$40 = %01000000 = 64 = -192 = '@
$41 = %01000001 = 65 = -191 = 'A
$42 = %01000010 = 66 = -190 = 'B
$43 = %01000011 = 67 = -189 = 'C
$44 = %01000100 = 68 = -188 = 'D
$45 = %01000101 = 69 = -187 = 'E
$46 = %01000110 = 70 = -186 = 'F
$47 = %01000111 = 71 = -185 = 'G
$48 = %01001000 = 72 = -184 = 'H
$49 = %01001001 = 73 = -183 = 'I
$4A = %01001010 = 74 = -182 = 'J
$4B = %01001011 = 75 = -181 = 'K
$4C = %01001100 = 76 = -180 = 'L
$4D = %01001101 = 77 = -179 = 'M
$4E = %01001110 = 78 = -178 = 'N
$4F = %01001111 = 79 = -177 = 'O

40

$50 = %01010000 = 80 = -176 = 'P
$51 = %01010001 = 81 = -175 = 'Q
$52 = %01010010 = 82 = -174 = 'R
$53 = %01010011 = 83 = -173 = 'S
$54 = %01010100 = 84 = -172 = 'T
$55 = %01010101 = 85 = -171 = 'U
$56 = %01010110 = 86 = -170 = 'V
$57 = %01010111 = 87 = -169 = 'W
$58 = %01011000 = 88 = -168 = 'X
$59 = %01011001 = 89 = -167 = 'Y
$5A = %01011010 = 90 = -166 = 'Z
$5B = %01011011 = 91 = -165 = '[
$5C = %01011100 = 92 = -164 = '\
$5D = %01011101 = 93 = -163 = ']
$5E = %01011110 = 94 = -162 = '^
$5F = %01011111 = 95 = -161 = '_
$60 = %01100000 = 96 = -160 = '`
$61 = %01100001 = 97 = -159 = 'a
$62 = %01100010 = 98 = -158 = 'b
$63 = %01100011 = 99 = -157 = 'c
$64 = %01100100 = 100 = -156 = 'd
$65 = %01100101 = 101 = -155 = 'e
$66 = %01100110 = 102 = -154 = 'f
$67 = %01100111 = 103 = -153 = 'g
$68 = %01101000 = 104 = -152 = 'h
$69 = %01101001 = 105 = -151 = 'i
$6A = %01101010 = 106 = -150 = 'j
$6B = %01101011 = 107 = -149 = 'k
$6C = %01101100 = 108 = -148 = 'l
$6D = %01101101 = 109 = -147 = 'm
$6E = %01101110 = 110 = -146 = 'm
$6F = %01101111 = 111 = -145 = 'o
$70 = %01110000 = 112 = -144 = 'p
$71 = %01110001 = 113 = -143 = 'q
$72 = %01110010 = 114 = -142 = 'r
$73 = %01110011 = 115 = -141 = 's
$74 = %01110100 = 116 = -140 = 't
$75 = %01110101 = 117 = -139 = 'u
$76 = %01110110 = 118 = -138 = 'v
$77 = %01110111 = 119 = -137 = 'w
$78 = %01111000 = 120 = -136 = 'x
$79 = %01111001 = 121 = -135 = 'y
$7A = %01111010 = 122 = -134 = 'z
$7B = %01111011 = 123 = -133 = '{

41

$7C = %01111100 = 124 = -132 = '|
$7D = %01111101 = 125 = -131 = '}
$7E = %01111110 = 126 = -130 = '~
$7F = %01111111 = 127 = -129
$80 = %10000000 = 128 = -128
$81 = %10000001 = 129 = -127
$82 = %10000010 = 130 = -126
$83 = %10000011 = 131 = -125
$84 = %10000100 = 132 = -124
$85 = %10000101 = 133 = -123
$86 = %10000110 = 134 = -122
$87 = %10000111 = 135 = -121
$88 = %10001000 = 136 = -120
$89 = %10001001 = 137 = -119
$8A = %10001010 = 138 = -118
$8B = %10001011 = 139 = -117
$8C = %10001100 = 140 = -116
$8D = %10001101 = 141 = -115
$8E = %10001110 = 142 = -114
$8F = %10001111 = 143 = -113
$90 = %10010000 = 144 = -112
$91 = %10010001 = 145 = -111
$92 = %10010010 = 146 = -110
$93 = %10010011 = 147 = -109
$94 = %10010100 = 148 = -108
$95 = %10010101 = 149 = -107
$96 = %10010110 = 150 = -106
$97 = %10010111 = 151 = -105
$98 = %10011000 = 152 = -104
$99 = %10011001 = 153 = -103
$9A = %10011010 = 154 = -102
$9B = %10011011 = 155 = -101
$9C = %10011100 = 156 = -100
$9D = %10011101 = 157 = -99
$9E = %10011110 = 158 = -98
$9F = %10011111 = 159 = -97
$A0 = %10100000 = 160 = -96
$A1 = %10100001 = 161 = -95
$A2 = %10100010 = 162 = -94
$A3 = %10100011 = 163 = -93
$A4 = %10100100 = 164 = -92
$A5 = %10100101 = 165 = -91
$A6 = %10100110 = 166 = -90
$A7 = %10100111 = 167 = -89

42

$A8 = %10101000 = 168 = -88
$A9 = %10101001 = 169 = -87
$AA = %10101010 = 170 = -86
$AB = %10101011 = 171 = -85
$AC = %10101100 = 172 = -84
$AD = %10101101 = 173 = -83
$AE = %10101110 = 174 = -82
$AF = %10101111 = 175 = -81
$B0 = %10110000 = 176 = -80
$B1 = %10110001 = 177 = -79
$B2 = %10110010 = 178 = -78
$B3 = %10110011 = 179 = -77
$B4 = %10110100 = 180 = -76
$B5 = %10110101 = 181 = -75
$B6 = %10110110 = 182 = -74
$B7 = %10110111 = 183 = -73
$B8 = %10111000 = 184 = -72
$B9 = %10111001 = 185 = -71
$BA = %10111010 = 186 = -70
$BB = %10111011 = 187 = -69
$BC = %10111100 = 188 = -68
$BD = %10111101 = 189 = -67
$BE = %10111110 = 190 = -66
$BF = %10111111 = 191 = -65
$C0 = %11000000 = 192 = -64
$C1 = %11000001 = 193 = -63
$C2 = %11000010 = 194 = -62
$C3 = %11000011 = 195 = -61
$C4 = %11000100 = 196 = -60
$C5 = %11000101 = 197 = -59
$C6 = %11000110 = 198 = -58
$C7 = %11000111 = 199 = -57
$C8 = %11001000 = 200 = -56
$C9 = %11001001 = 201 = -55
$CA = %11001010 = 202 = -54
$CB = %11001011 = 203 = -53
$CC = %11001100 = 204 = -52
$CD = %11001101 = 205 = -51
$CE = %11001110 = 206 = -50
$CF = %11001111 = 207 = -49
$D0 = %11010000 = 208 = -48
$D1 = %11010001 = 209 = -47
$D2 = %11010010 = 210 = -46
$D3 = %11010011 = 211 = -45

43

$D4 = %11010100 = 212 = -44
$D5 = %11010101 = 213 = -43
$D6 = %11010110 = 214 = -42
$D7 = %11010111 = 215 = -41
$D8 = %11011000 = 216 = -40
$D9 = %11011001 = 217 = -39
$DA = %11011010 = 218 = -38
$DB = %11011011 = 219 = -37
$DC = %11011100 = 220 = -36
$DD = %11011101 = 221 = -35
$DE = %11011110 = 222 = -34
$DF = %11011111 = 223 = -33
$E0 = %11100000 = 224 = -32
$E1 = %11100001 = 225 = -31
$E2 = %11100010 = 226 = -30
$E3 = %11100011 = 227 = -29
$E4 = %11100100 = 228 = -28
$E5 = %11100101 = 229 = -27
$E6 = %11100110 = 230 = -26
$E7 = %11100111 = 231 = -25
$E8 = %11101000 = 232 = -24
$E9 = %11101001 = 233 = -23
$EA = %11101010 = 234 = -22
$EB = %11101011 = 235 = -21
$EC = %11101100 = 236 = -20
$ED = %11101101 = 237 = -19
$EE = %11101110 = 238 = -18
$EF = %11101111 = 239 = -17
$F0 = %11110000 = 240 = -16
$F1 = %11110001 = 241 = -15
$F2 = %11110010 = 242 = -14
$F3 = %11110011 = 243 = -13
$F4 = %11110100 = 244 = -12
$F5 = %11110101 = 245 = -11
$F6 = %11110110 = 246 = -10
$F7 = %11110111 = 247 = -9
$F8 = %11111000 = 248 = -8
$F9 = %11111001 = 249 = -7
$FA = %11111010 = 250 = -6
$FB = %11111011 = 251 = -5
$FC = %11111100 = 252 = -4
$FD = %11111101 = 253 = -3
$FE = %11111110 = 254 = -2
$FF = %11111111 = 255 = -1

44

45

HD63B09EP Technical Reference Guide
Revision 3

By Chet Simpson
Modifications and Corrections by Alan DeKok

Additional Notes by Roger Taylor

Copyright (C) 1994 Chet Simpson and Alan DeKok
All Rights Reserved.

 License: This document may be freely distributed in electronic
 as long as it is unchanged, and the copyright notice

is intact. Permission is NOT given to reproduce it in
any other form without the written consent of the authors.

46

INDEX

 Introduction...1
 Summary of Features..1
 Description of Additional Registers..........................2
 Modes of Operation...3
 Native Mode and Timing Loops.................................3
 Modes of the Fast Interrupt Request (FIRQ)...................4
 Inter-Register Instructions..................................4
 Bit Manipulation of Memory Locations.........................4
 Bit Transfers Between Memory Locations and Registers.........5
 Block Transfers..6
 New math instructions (MULD, DIVD, DIVQ).....................7
 Error Trapping...7
 Additional instructions......................................7

 OP-Code Table...10

 Mnemonic Table..19
 Branch Instructions..24
 Bit Manipulation and Transfers.............................24
 Logical Memory Instructions................................25
 Inter-Register Instructions................................25
 Index Adressing Modes and Post- Byte Information...........26
 Register Description.......................................27
 Push/Pull Order..27
 Push/Pull Post-Byte..27
 Condition Code Register....................................27

47

 HD63B09EP Technical Reference Guide Page 1

 Introduction

 The HD63B09EP microprocessor by Hitachi, is a MC68B09E compatible
 chip containing additional registers and an additional instruction set.
 The 6309 was thought to be a flakey chip though, because it would
 sometimes crash or change the values of registers when it encountered an
 addressing mode or opcode invalid to the 6809. This was later found to be
 an extended instruction set and a feature that would trap some programming
 errors and jump to a specified location in memory.

 Hitachi licensed the rights of the 6809 instruction set from
 Motorola to make a 6809 compatible chip. When they finished the design,
 they found there was a lot of unused space in the chip. With this in mind
 they added extra registers and expanded on the instruction set, but due to
 the licensing agreement with Motorola, they were unable to release the
 information about the extra features.

 Not only does the chip have an expanded instruction set, but it also
 has a native mode that will run many of the instructions in fewer clock
 cycles and a mode select for the FIRQ (Fast Interrupt ReQuest) that will
 enable it to opperate the same as the IRQ.

 In fact, all new instructions will execute in emulation mode, which
 was originally seen when 'illegal' 6809 instructions produced odd effects
 when run on a computer with a 6309 installed.

 The additional instruction set was first written about in the April
 1988 issue of "Oh!FM", a Japanese magazine, and was later translated by
 Hirotsugu Kakagawa. This opened a whole new door to those who wished to
 use the 6309 in place of the 6809.

 In the beginning of 1992, Tandy Color Computer users in the US found
 out about these features. Although there has been limited and sometimes
 incorrect information about the new functions of the chip, I hope to
 bridge that gap with the information provided here.

 Remember that this information is of technical nature and makes no
 attempt to teach assembly language programming. It is ONLY a technical
 reference guide for those who already know assembly and wish to use these
 features in their programs. Although all of the opcodes for the 6309/6809
 chip are listed in the appendix, only the additional features supplied by
 the 6309 will be discussed.

 Summary of Features

 More registers:
 one 8/16 bit 'zero' register
 Two 8bit accumulators.
 One 16bit concatenated register
 One 16bit value register.
 One 8bit mode/error register.
 One 32bit concatenated register

 Two modes: MC68B09E emulation mode and HD63B09EP native mode.

 Reduced execution cycles when running in native mode.

 Many additional instructions.

 Error trapping of illegal instructions and zero divisions.

48

49

 HD63B09EP Technical Reference Guide Page 2

 Description of Additional Registers

 The 6309 has 7 additional registers. Only 4 of these are actual
 registers. 2 are combinations of registers, and the last is a
 constant-value register. These registers are:

 ACCE - 8 bit accumulator.
 ACCF - 8 bit accumulator.
 W - 16 bit concatenated register (ACCE and ACCF combined).
 V - 16 bit register (which can only be accessed with the
 inter-register instructions).
 0 - zero register
 MD - 8 bit mode/error register.
 Q - 32 bit concatenated register (ACCA, ACCB ,ACCE and ACCF
 combined).

 ACCE and ACCF both work the same as the ACCA and ACCB
 accumulators. This makes for easier programming in math and data oriented
 routines.

 The W register is like the D register in the 6809. It is a
 concatenated register containing the values of ACCE and ACCF as one 16 bit
 value. ACCE is contained in the high 8 bits and ACCF is contained in the
 low 8 bits.

 The V register is a 16 bit register that can only be accessed with
 inter-register instructions such a TFR and EXG. The contents of this
 register will not change if the CPU is reset, allowing this register to be
 used as a constant value for the program.

 The 0 register is always zero, independant of reads/writes to it.
 It enables a zero value to be used in inter-register operations without
 accessing memory, or changing the value of another register. If
 a 0 byte is stored at address $0000, it may also be used to clear large
 amounts of memory quickly via 'TFM 0,r+'

 The MD register is a mode and error register and works much in the
 same way as the CC register. The bit definitions are as follows:

 Write bits
 Bit 0 - Execution mode of the 6309.
 If clear (0), the cpu is in 6809 emulation mode.
 If set (1), the cpu is in 6309 native mode.
 Bit 1 - FIRQ mode
 If clear (0), the FIRQ will occur normally.
 If set (1) , the FIRQ will operate the same as the
 IRQ

 Bits 2 to 5 are unused

 Read bits - One of these bits is set when the 6309 traps an error
 Bit 6 - This bit is set (1) if an illegal instruction is
 encountered
 Bit 7 - This bit is set (1) if a zero division occurs.

 The Q register is a 32 bit concatenated register. This register is
 the same as the D and W register except for one respect. It contains the
 values of ACCA, ACCB, ACCE and ACCF respectively. This register is used
 mostly with the additional math instructions supplied with the 6309 which
 will be discussed later.

50

51

 HD63B09EP Technical Reference Guide Page 3

 Modes of Operation

 The 6309 has two modes of operation; 6809 Emulation mode in which
 the chip acts and executes instructions the same as the 6809, and 6309
 Native mode which stores an extra two bytes on the stack when an interrupt
 (IRQ) occurs, and executes instructions in fewer clock cycles.

 When in native mode, the W register (2 additional bytes) is stored
 (PSHS) on the system stack when an interrupt occurs, it is stored on the
 stack right after the D (general data) register. Since ALL register
 values are stored on the system stack when an IRQ (NOT FIRQ - See FIRQ
 modes for more information) occurs, great care should be taken when
 writing or patching those routines to run in native mode.

 Pull <- CC,A,B,E*,F*,DP,Xhi,Xlo,Yhi,Ylo,Uhi,Ulo,PChi,PClo <- Push

 * indicates the additional registers stored on the system stack

 When in native mode those interrupt routines which modify the return
 address by modifying the 10th and 11th byte offsets from the stack (STX
 10,S or STY 10,S etc.) will have to be changed to modify the 12th and 13th
 byte offsets from the stack (STX 12,S or STY 12,S etc.). If those routines
 are not patched to run in native mode they will either get stuck in a
 continuous loop or will crash the system due to the fact that they are not
 returning to the correct address. This poses a MAJOR problem for OS-9
 Level II since its main interrupt handling routine relies highly on the
 changing of the return (PC) address on the stack. Disk read/write and
 formatting routines also rely heavily on changing the return address
 during an NMI (Non-Maskable Interrupt).

 To patch those routines which do modify the return address, the
 program or routine must be disassembled or modified with a disk sector
 editing program. Look for instructions such as STX 10,S or STY 10,S that
 has an RTI (Return from Interrupt) instruction within the next few lines
 of the routine. The line containing STX 10,S or STY 10,S should be changed
 to STX 12,S or STY 12,S respectively.

 Remember, after those routines are patched, those programs using them
 will NOT work in emulation mode and will require native mode to be enabled
 upon startup.

 Native Mode and Timing Loops

 There is at least one more problem that needs to be addressed. Those
 are routines which are dependant on timing loops for accuarate operation.
 Since the 6309 executes instructions faster when in native mode, those
 routines that use timing loops would be effected. Since this can pose a
 problem and can create erratic operation, the delay value or routine will
 need to be changed for the routine to operate correctly.

 Those routines are usually serial-printer routines, cassette
 read/write timimg routines, software clocks and some disk read/write
 routines.

52

 HD63B09EP Technical Reference Guide Page 4

 Modes of the Fast Interrupt Request (FIRQ)

 The designers of the 6309 decided that with the additional
 instructions and native mode of operation, the FIRQ may be used more than
 it usually is. With this in mind they decided to allow you to make the
 FIRQ run the same as the IRQ and store (PSHS) all the current values of
 the registers on the system stack. Normally, the FIRQ only stores the CC
 (condition code) and the PC (Program Counter/return address) on the stack,
 so to keep compatability with the 6809, they included it as a selectable
 feature in the MD (Mode/status) register.

 Inter-Register Instructions

 The new Inter-Register instructions (ADCR, ADDR, CMPR, EORR, ORR,
 SBCR, and SUBR) all work the same as their register/memory (ADCA, ADDA,
 etc.) counterparts except that they operate between registers. All of the
 new instructions use the same post-byte information as the normal TFR
 instruction and use the format of R0,R1 (register 0 and Register 1
 respectively) with the result going into R1. See Block Transfers for
 information on the TFR block move instructions.

 Mixed-size inter-register operations default to using
 identical sized register. So TFR A,X actually executes as TFR D,X.
 You could also do 'lea(d) d,pc' type things by doing 'addr pc,d'. As
 the new inter-register instructions can now perform math using the PC
 register, REALLY odd possibilities exist. Try looking at code like
 'eorr d,pc', and figuring out where it ends up.

 Inter-register instructions with 16-bit r1 and CC or DP (8-bit r2)
 are legal, but the results are unknown.

 Bit Manipulation of Memory Locations

 The AIM, EIM, OIM and TIM instructions all do logical bit
 manipulations to locations in memory, with the result stored into the
 location, and the respective bits for each instruction set in the CC
 register. They can be used in the DIRECT, INDEXED or EXTENDED adressing
 modes.

 Instruction descriptions:

 AIM - AND IN MEMORY
 EIM - EOR IN MEMORY
 OIM - OR IN MEMORY
 TIM - TEST bits IN MEMORY

 Instruction format: X, post byte, operand

 Where X is the instruction op-code, post-byte contains the bits to
 AND, OR, EOR or TEST against the memory location, and the operand is the
 memory location or indexing post-byte depending on the mode of operation.

 Mnemonic format:
 Instruction logical operation value, memory location or index operation

 Mnemonic example:
 AIM #$0F,$E00

 The example takes the contents of memory location $E00, does a LOGICAL
 and with the Value #$0F and then stores the result back into $E00.

53

54

 HD63B09EP Technical Reference Guide Page 5

 Bit Transfers Between Memory Locations and Registers

 The BAND, BIAND, BOR, BIOR, BEOR, BIEOR, LDBT, and STBT all do
 logical operations to bits for the n-th bit in a memory location and the
 m-th bit of a register. The LDBT and STBT instructions allow you to
 transfer certain bits between registers and memory locations. All
 instructions allow you to specify which register to use, which bit
 location to use in the register, which bit location to use in the memory
 location, and the memory location to use. This allows you to transfer/or
 do a logical operation with the 7th bit of a register and the 3rd bit of a
 memory location. All bits are accessible on either the register or memory
 locations. The only limitations are that the instructions can only be used
 with the A and B accumulators and the CC (condition Code) registers. It
 should also be noted that these instructions can only be used in the
 DIRECT addressing mode.

 Instruction description:

 BAND - AND a bit in a register with bit from memory location
 BIAND - AND a bit in a register with the complement of the bit in memory
 BOR - OR a bit in a register with a bit from a memory location
 BIOR - OR a bit in a register with the complement of the bit in memory
 BEOR - EOR a bit in a register with a bit from a memory location
 BIEOR - EOR a bit in a register with the complement of the bit in memory
 LDBT - Load a bit from a memory location into a bit in a register
 STBT - Store a bit from a register into a memory location.

 Instruction format:

 x, post-byte, memory location

 Where X is the instruction op-code, the post-byte contains the
 register, source and destination bit information and the memory location
 is the 8 bit value of the memory location to be used (Remember only DIRECT
 mode is allowed with these instructions).

 Mnemonic format:

 instruction, register, source bit, destination bit, memory location

 Mnemonic example:

 BOR A,1,7,$00

 The example would take the first (1) bit of register A (A) and OR it
 into the 7th (7) bit of memory location $00 ($00) of the direct page (DP
 register value)

 The post-byte of these instructions are not the same as the post-byte
 used in any other operation (indexed or inter-register) as all of the
 information (register, source and destination bit) is contained in one
 post-byte value.

55

 HD63B09EP Technical Reference Guide Page 6

 Block Transfers

 Block transfers are used to move a certain number of bytes from one
 place in memory to another with the use of one instruction. Two 16 bit
 registers (X, Y, U or S) are used to specify the source and destination
 addresses, and the size of the block to be transferred is specified with
 the W register. It should be noted that even though the IRQ and FIRQ only
 occur after the current instruction is finished, block moves can be
 interrupted. After the interrupt returns, the last byte read is read once
 more. i.e. It is read _twice_ by the CPU This can cause problems with
 memory mapped I/O devices, so caution is advised when using the block
 transfers. There isn't much control over these 4 instructions so the only
 thing applicable for them would be large block moves such as scrolling the
 screen or clearing an area in memory with a certain value.

 TFM r0+,r1 and TFM r0,r1+ can be considered a poor mans DMA channel.
 Since all the data is either copied into or read from one memory location.

 Four types of block transfers have been provided.

 Mnemonic examples:

 (R0 - source address register, R1 - destination address register.)

 TFM r0+,r1+
 - Transfer from R0 to R1 in incrementing order.

 TFM r0-,r1-
 - Transfer from R0 to R1 in decrementing order.

 TFM r0+,r1
 - Pour from R0 into R1, only incrementing R0 (R1 stays the same).

 TFM r0,r1+
 - Read from R0 into R1, only incrementing R0 (R1 stays the same).

 Mnemonic example:

 LDW #$100
 LDX #$600
 LDY #$700
 TFM X+,Y+

 The example would move 256 (LDW $100) bytes from #$600 (LDX #$&00) in
 memory to #$700 (LDY #$700) in memory, incrementing the value of each
 register (X and Y), and decrementing the value of the W register each time
 a byte if moved.

 When moves like this are done, the pointer registers (X and Y in the
 example) will not be the same value they were before the transfer was
 initiated, but will but will be their original values PLUS the value of
 the W register (#$100 in the example). So in the example once the move is
 complete, the value of X will be returned as #$700 and the value of Y will
 be returned as #$800. The value of W register will be 0.

 The 0 register may be used as a source or destination address register,
 and the data will be read from, or written to, address $0000.

 It is illegal to use any of the CC, DP, W, V, or PC registers as either
 a source or destination register.

56

57

HD63B09EP Technical Reference Guide Page 7

 New math commands

 The 6309 has 3 additional math instructions. A 16 bit by 16 bit
 signed multiply (MULD), a 16 bit by 8 bit signed divide (DIVD) and a 32
 bit by 16 bit signed divide (DIVQ). These instructions can all be used in
 Immediate, direct, indexed and extended addressing modes.

 The MULD (16 bit by 16 bit) instruction does a signed multiply of the
 contents of the D register and a value from memory (or in direct mode).
 The signed result is stored in the Q register.

 The DIVD (16 bit by 8 bit) instruction does a signed divide of the
 contents of the D register with a value from memory (or in direct mode).
 The signed result is stored with the quotient in W and the modulo
 (remainder) in D.

 The DIVQ (32 bit by 16 bit) instruction does a signed divide of the
 contents of the Q register with a value from memory (or in direct mode).
 The signed result is stored with the quotient in W and the modulo
 (remainder) in D.

 Error Trapping

 The 6309 has an internal error trapping handler that will jump to a
 specific location in memory when either an error is encountered in the
 DIVision instructions (only divide by zero) or an illegal instruction is
 encountered. When an error is encountered, the 6309 will jump to the
 memory location contained in $FFF0 (and $FFF1) which was originally
 reserved by the 6809.

 The trap may cause problems with machines that have $FF00 hardcoded
 with the values $0000. A new EPROM should be burned to correct for the
 new behaviour of the 6309.

 As many people know, an illegal instruction trap is extremely useful
 for debugging programs, as it prevents the entire machine from crashing
 when a bug is encountered.

 Note that many pseudo-legal instructions on the 6809 are now illegal
 on the 6309, e.g. $1020xxxx executes as an LBRA on a 6809, but results in
 a trap on a 6309.

 Additional Instructions

 The 6309 has MANY new instructions. Most are variations of old
 instructions of the 6809 for use with the new registers. The new
 instruction set can be used in both native and emulation mode. Here is a
 list of the new instructions of the 6309:

 ADCD
 - Adds immediate or memory operand to the D register plus the current
 status of the carry with the result going to D.

 ADCR
 - Adds two registers together plus the current status of the carry.

58

 HD63B09EP Technical Reference Guide Page 8

 ADDE , ADDF, ADDW
 - Add of immediate or memory operand to E, F or W with results going
 to E, F or W

 ADDR
 - Adds two registers together

 ANDD
 - Logical AND of immediate or memory operand to D register with
 result going to D.

 ANDR
 - Logical AND of a register with the contents of another register

 ASLD (Same as LSLD)
 - Arithmetic shift left. Shifts D one bit left, clearing LSB.

 ASRD
 - Arithmetic shift right of the D register with sign extending.

 BITD
 - Test any bit or bits of the D register.

 BITMD
 - Test any bit or bits of the MD (mode) register.

 CLRD, CLRE, CLRF, CLRW
 - Clear register D, E, F or W to zero.

 CMPE, CMPF, CMPW
 - Compares the contents of E, F or W with the immediate or memory
 operand. Sets all CC except H on result.

 CMPR
 - Compares one register to another and sets all CC bits except H on
 result.

 COMD, COME, COMF, COMW
 - One's complement D ,E, F, or W. Changes all zero's to one's and
 all one's to zero's.

 DECD, DECE, DECF, DECW
 - Decrement D, E, F, or W by 1.

 DIVD, DIVQ
 - Does a 16 bit by 8 bit (DIVD) or a 32 bit by 16 bit (DIVQ) signed
 divide with immediate or memory operand with quotient in W and modulo
 (remainder) in D.

 EORD
 - Logical exclusive OR of D and immediate or memory operand.

 EORR
 - Logical exclusive OR of one register with the value of another
 register.

 INCD, INCE, INCF, INCW
 - Increment D, E, F or W by 1.

 LDE, LDF, LDQ, LDW, LDMD
 - Standard loading of E, F, Q, W or MD with immediate data value or
 operand from memory. (LDMD only valid with IMMEDIATE mode)

59

 HD63B09EP Technical Reference Guide Page 9

 LSLD (Same as ASLD)
 - Logical shift left. Shifts D one bit left, clearing LSB.

 LSRD, LSRW
 - Logical shift right. Shifts D or W one bit right, clearing MSB.

 MULD
 - Performs as 16bit by 16bit signed multiply with immediate or operand
 from memory. Result stored in Q.

 NEGD
 - Two's complement D register.

 ORD
 - Logical OR of register D and immediate or memory operand.

 ORR
 - Logical OR of one register with another.

 PSHSW, PSHUW
 - Stores contents of the W register on the (system or user) stack.

 PULSW, PULUW
 - Pull value from (system or user) stack into register W.

 ROLD, ROLW
 - Rotate D or W one bit left through the Carry Condition code.

 RORD, RORW
 - Rotate D or W one bit right through the Carry Condition code.

 SBCD
 - Subtract an immediate or memory operand plus any borrow in Carry from
 contents of D. Result stored in D.

 SBCR
 - Subtract the value of one register from another plus any borrow in
 the CC carry.

 SEXW
 - sign exdend the W register into the D register.

 STE, STF, STQ, STW
 - Store register E, F, Q or W to memory location (E,F), two memory
 locations(W), or four memory locations (Q).

 SUBE, SUBF, SUBW
 - Subtract immediate or memory operand from E, F or W. Result stored
 back in same register.

 SUBR
 - Subtract the value of one register from another.

 TFM (Block transfer)
 - Transfer W number of bytes from one location to another. Returns
 pointer registers offset of the starting value in the W register and
 returns the W register as 0. Indexed operation only

 TSTD, TSTE, TSTF, TSTW
 - Test contents of D, E, F or W by setting N and X condition codes
 based on data in register.

60

61

 Opcode and Mnemonics Reference Table Page 10

 The Opcode and Mnemonics opcode reference tables are both complete
 listings that contain both the Opcode instruction and the HEX equivalant
 in all available addressing modes. The first table is arranged
 sequentially by the binary opcodes, while the second table is arranged
 alphabetically by the Mnemonic instructions.

 At the end of the second table there are data tables containing
 information on Bit transfer/manipulation, branch instructions,
 inter-register instructions, and general register and stack information.
 These are all helpful to the serious assembly language programmer, who
 should always have one.

 Opcode table

 __
 | |
 | Opcode Mnemonic Mode Cycles Length |
 | (* 6309) 6809 (6309) |
 |--|
 | 00 NEG Direct 6 (5) 2 |
 | * 01 OIM Direct 6 3 |
 | * 02 AIM Direct 6 3 |
 | 03 COM Direct 6 (5) 2 |
 | 04 LSR Direct 6 (5) 2 |
 | * 05 EIM Direct 6 3 |
 | 06 ROR Direct 6 (5) 2 |
 | 07 ASR Direct 6 (5) 2 |
 | 08 ASL/LSL Direct 6 (5) 2 |
 | 09 ROL Direct 6 (5) 2 |
 | 0A DEC Direct 6 (5) 2 |
 | * 0B TIM Direct 6 |
 | 0C INC Direct 6 (5) 2 |
 | 0D TST Direct 6 (4) 2 |
 | 0E JMP Direct 3 (2) 2 |
 | 0F CLR Direct 6 (5) 2 |
 | 10 (PREBYTE) |
 | 11 (PREBYTE) |
 | 12 NOP Inherent 2 (1) 1 |
 | 13 SYNC Inherent 2 (1) 1 |
 | * 14 SEXW Inherent 4 1 |
 | 16 LBRA Relative 5 (4) 3 |
 | 17 LBSR Relative 9 (7) 3 |
 | 19 DAA Inherent 2 (1) 1 |
 | 1A ORCC Immediate 3 (2) 2 |
 | 1C ANDCC Immediate 3 2 |
 | 1D SEX Inherent 2 (1) 1 |
 | 1E EXG Immediate 8 (5) 2 |
 | 1F TFR Immediate 6 (4) 2 |
 | 20 BRA Relative 3 2 |
 | 21 BRN Relative 3 2 |
 | 22 BHI Relative 3 2 |
 | 23 BLS Relative 3 2 |
 | 24 BHS/BCC Relative 3 2 |
 | 25 BLO/BCS Relative 3 2 |
 | 26 BNE Relative 3 2 |
 | 27 BEQ Relative 3 2 |
 --

62

63

Opcode and Mnemonics opcode reference table Page 11

 __
 | |
 | Opcode Mnemonic Mode Cycles Length |
 | (* 6309) |
 |--|
 | 28 BVC Relative 3 2 |
 | 29 BVS Relative 3 2 |
 | 2A BPL Relative 3 2 |
 | 2B BMI Relative 3 2 |
 | 2C BGE Relative 3 2 |
 | 2D BLT Relative 3 2 |
 | 2E BGT Relative 3 2 |
 | 2F BLE Relative 3 2 |
 | 30 LEAX Indexed 4+ 2 |
 | 31 LEAY Indexed 4+ 2 |
 | 32 LEAS Indexed 4+ 2 |
 | 33 LEAU Indexed 4+ 2 |
 | 34 PSHS Immediate 5+ (4+) 2 |
 | 35 PULS Immediate 5+ (4+) 2 |
 | 36 PSHU Immediate 5+ (4+) 2 |
 | 37 PULU Immediate 5+ (4+) 2 |
 | 39 RTS Inherent 5 (1) 1 |
 | 3A ABX Inherent 3 (1) 1 |
 | 3B RTI Inherent 6/15 (17) 1 |
 | 3C CWAI Immediate 22 (20) 2 |
 | 3D MUL Inherent 11 (10) 1 |
 | 3F SWI Inherent 19 (21) 1 |
 | 40 NEGA Inherent 2 (1) 1 |
 | 43 COMA Inherent 2 (1) 1 |
 | 44 LSRA Inherent 2 (1) 1 |
 | 46 RORA Inherent 2 (1) 1 |
 | 47 ASRA Inherent 2 (1) 1 |
 | 48 ASLA/LSLA Inherent 2 (1) 1 |
 | 49 ROLA Inherent 2 (1) 1 |
 | 4A DECA Inherent 2 (1) 1 |
 | 4C INCA Inherent 2 (1) 1 |
 | 4D TSTA Inherent 2 (1) 1 |
 | 4F CLRA Inherent 2 (1) 1 |
 | 50 NEGB Inherent 2 (1) 1 |
 | 53 COMB Inherent 2 (1) 1 |
 | 54 LSRB Inherent 2 (1) 1 |
 | 56 RORB Inherent 2 (1) 1 |
 | 57 ASRB Inherent 2 (1) 1 |
 | 58 ASLB/LSLB Inherent 2 (1) 1 |
 | 59 ROLB Inherent 2 (1) 1 |
 | 5A DECB Inherent 2 (1) 1 |
 | 5C INCB Inherent 2 (1) 1 |
 | 5D TSTB Inherent 2 (1) 1 |
 | 5F CLRB Inherent 2 (1) 1 |
 | 60 NEG Indexed 6+ 2+ |
 | * 61 OIM Indexed 6+ 3+ |
 | * 62 AIM Indexed 7 3+ |
 | 63 COM Indexed 6+ 2+ |
 | 64 LSR Indexed 6+ 2+ |
 | * 65 EIM Indexed 7+ 3+ |
 | 66 ROR Indexed 6+ 2+ |
 | 67 ASR Indexed 6+ 2+ |
 | 68 ASL/LSL Indexed 6+ 2+ |
 | 69 ROL Indexed 6+ 2+ |
 --

64

 Opcode and Mnemonics opcode reference table Page 12

 __
 | |
 | Opcode Mnemonic Mode Cycles Length |
 | (* 6309) |
 |--|
 | 6A DEC Indexed 6+ 2+ |
 | * 6B TIM Indexed 7+ 3+ |
 | 6C INC Indexed 6+ 2+ |
 | 6D TST Indexed 6+ (5+) 2+ |
 | 6E JMP Indexed 3+ 2+ |
 | 6F CLR Indexed 6+ 2+ |
 | 70 NEG Extended 7 (6) 3 |
 | * 71 OIM Extended 7 4 |
 | * 72 AIM Extended 7 4 |
 | 73 COM Extended 7 (6) 3 |
 | 74 LSR Extended 7 (6) 3 |
 | 76 ROR Extended 7 (6) 3 |
 | * 75 EIM Extended 7 4 |
 | 77 ASR Extended 7 (6) 3 |
 | 78 ASL/LSL Extended 7 (6) 3 |
 | 79 ROL Extended 7 (6) 3 |
 | 7A DEC Extended 7 (6) 3 |
 | * 7B TIM Extended 7 4 |
 | 7C INC Extended 7 (6) 3 |
 | 7D TST Extended 7 (5) 3 |
 | 7E JMP Extended 4 (3) 3 |
 | 7F CLR Extended 7 (6) 3 |
 | 80 SUBA Immediate 2 2 |
 | 81 CMPA Immediate 2 2 |
 | 82 SBCA Immediate 2 2 |
 | 83 SUBD Immediate 4 (3) 3 |
 | 84 ANDA Immediate 2 2 |
 | 85 BITA Immediate 2 2 |
 | 86 LDA Immediate 2 2 |
 | 88 EORA Immediate 2 2 |
 | 89 ADCA Immediate 2 2 |
 | 8A ORA Immediate 2 2 |
 | 8B ADDA Immediate 2 2 |
 | 8C CMPX Immediate 4 (3) 3 |
 | 8D BSR Relative 7 (6) 2 |
 | 8E LDX Immediate 3 3 |
 | 90 SUBA Direct 4 (3) 2 |
 | 91 CMPA Direct 4 (3) 2 |
 | 92 SBCA Direct 4 (3) 2 |
 | 93 SUBD Direct 6 (4) 2 |
 | 94 ANDA Direct 4 (3) 2 |
 | 95 BITA Direct 4 (3) 2 |
 | 96 LDA Direct 4 (3) 2 |
 | 97 STA Direct 4 (3) 2 |
 | 98 EORA Direct 4 (3) 2 |
 | 99 ADCA Direct 4 (3) 2 |
 | 9A ORA Direct 4 (3) 2 |
 | 9B ADDA Direct 4 (3) 2 |
 | 9C CMPX Direct 6 (4) 2 |
 | 9D JSR Direct 7 (6) 2 |
 | 9E LDX Direct 5 (4) 2 |
 | 9F STX Direct 5 (4) 2 |
 | A0 SUBA Indexed 4+ 2+ |
 | A1 CMPA Indexed 4+ 2+ |
 --

65

66

 Opcode and Mnemonics opcode reference table Page 13

 __
 | |
 | Opcode Mnemonic Mode Cycles Length |
 | (* 6309) |
 |--|
 | A2 SBCA Indexed 4+ 2+ |
 | A3 SUBD Indexed 6+ (5+) 2+ |
 | A4 ANDA Indexed 4+ 2+ |
 | A5 BITA Indexed 4+ 2+ |
 | A6 LDA Indexed 4+ 2+ |
 | A7 STA Indexed 4+ 2+ |
 | A8 EORA Indexed 4+ 2+ |
 | A9 ADCA Indexed 4+ 2+ |
 | AA ORA Indexed 4+ 2+ |
 | AB ADDA Indexed 4+ 2+ |
 | AC CMPX Indexed 6+ (5+) 2+ |
 | AD JSR Indexed 7+ (6+) 2+ |
 | AE LDX Indexed 5+ 2+ |
 | AF STX Indexed 5+ 2+ |
 | B0 SUBA Extended 5 (4) 3 |
 | B1 CMPA Extended 5 (4) 3 |
 | B2 SBCA Extended 5 (4) 3 |
 | B3 SUBD Extended 7 (5) 3 |
 | B4 ANDA Extended 5 (4) 3 |
 | B5 BITA Extended 5 (4) 3 |
 | B6 LDA Extended 5 (4) 3 |
 | B7 STA Extended 5 (4) 3 |
 | B8 EORA Extended 5 (4) 3 |
 | B9 ADCA Extended 5 (4) 3 |
 | BA ORA Extended 5 (4) 3 |
 | BB ADDA Extended 5 (4) 3 |
 | BC CMPX Extended 7 (5) 3 |
 | BD JSR Extended 8 (7) 3 |
 | BE LDX Extended 6 (5) 3 |
 | BF STX Extended 6 (5) 3 |
 | C0 SUBB Immediate 2 2 |
 | C1 CMPB Immediate 2 2 |
 | C2 SBCB Immediate 2 2 |
 | C3 ADDD Immediate 4 (3) 3 |
 | C4 ANDB Immediate 2 2 |
 | C5 BITB Immediate 2 2 |
 | C6 LDB Immediate 2 2 |
 | C8 EORB Immediate 2 2 |
 | C9 ADCB Immediate 2 2 |
 | CA ORB Immediate 2 2 |
 | CB ADDB Immediate 2 2 |
 | CC LDD Immediate 3 3 |
 | * CD LDQ Immediate 5 5 |
 | CE LDU Immediate 3 3 |
 | D0 SUBB Direct 4 (3) 2 |
 | D1 CMPB Direct 4 (3) 2 |
 | D2 SBCB Direct 4 (3) 2 |
 | D3 ADDD Direct 6 (4) 2 |
 | D4 ANDB Direct 4 (3) 2 |
 | D5 BITB Direct 4 (3) 2 |
 | D6 LDB Direct 4 (3) 2 |
 | D7 STB Direct 4 (3) 2 |
 | D8 EORB Direct 4 (3) 2 |
 | D9 ADCB Direct 4 (3) 2 |
 --

67

68

 Opcode and Mnemonics opcode reference table Page 14

 __
 | |
 | Opcode Mnemonic Mode Cycles Length |
 | (* 6309) |
 |--|
 | DA ORB Direct 4 (3) 2 |
 | DB ADDB Direct 4 (3) 2 |
 | DC LDD Direct 5 (4) 2 |
 | DD STD Direct 5 (4) 2 |
 | DE LDU Direct 5 (4) 2 |
 | DF STU Direct 5 (4) 2 |
 | E0 SUBB Indexed 4+ 2+ |
 | E1 CMPB Indexed 4+ 2+ |
 | E2 SBCB Indexed 4+ 2+ |
 | E3 ADDD Indexed 6+ (5+) 2+ |
 | E4 ANDB Indexed 4+ 2+ |
 | E5 BITB Indexed 4+ 2+ |
 | E6 LDB Indexed 4+ 2+ |
 | E7 STB Indexed 4+ 2+ |
 | E8 EORB Indexed 4+ 2+ |
 | E9 ADCB Indexed 4+ 2+ |
 | EA ORB Indexed 4+ 2+ |
 | EB ADDB Indexed 4+ 2+ |
 | EC LDD Indexed 5+ 2+ |
 | ED STD Indexed 5+ 2+ |
 | EE LDU Indexed 5+ 2+ |
 | EF STU Indexed 5+ 2+ |
 | F0 SUBB Extended 5 (4) 3 |
 | F1 CMPB Extended 5 (4) 3 |
 | F2 SBCB Extended 5 (4) 3 |
 | F3 ADDD Extended 7 (5) 3 |
 | F4 ANDB Extended 5 (4) 3 |
 | F5 BITB Extended 5 (4) 3 |
 | F6 LDB Extended 5 (4) 3 |
 | F7 STB Extended 5 (4) 3 |
 | F8 EORB Extended 5 (4) 3 |
 | F9 ADCB Extended 5 (4) 3 |
 | FA ORB Extended 5 (4) 3 |
 | FB ADDB Extended 5 (4) 3 |
 | FC LDD Extended 6 (5) 3 |
 | FD STD Extended 6 (5) 3 |
 | FE LDU Extended 6 (5) 3 |
 | FF STU Extended 6 (5) 3 |
 | 1021 LBRN Reletive 5/6 () 4 |
 | 1022 LBHI Reletive 5/6 () 4 |
 | 1023 LBLS Reletive 5/6 () 4 |
 | 1024 LBHS/LBCC Reletive 5/6 () 4 |
 | 1025 LBCS/LBLO Reletive 5/6 () 4 |
 | 1026 LBNE Reletive 5/6 () 4 |
 | 1027 LBEQ Reletive 5/6 () 4 |
 | 1028 LBVC Reletive 5/6 () 4 |
 | 1029 LBVS Reletive 5/6 () 4 |
 | 102A LBPL Reletive 5/6 () 4 |
 | 102B LBMI Reletive 5/6 () 4 |
 | 102C LBGE Reletive 5/6 () 4 |
 | 102D LBLT Reletive 5/6 () 4 |
 | 102E LBGT Reletive 5/6 () 4 |
 | 102F LBLE Reletive 5/6 () 4 |
 | * 1030 ADDR Register 4 3 |
 --

69

70

 Opcode and Mnemonics opcode reference table Page 15

 __
 | |
 | Opcode Mnemonic Mode Cycles Length |
 | (* 6309) |
 |--|
 | * 1031 ADCR Register 4 3 |
 | * 1032 SUBR Register 4 3 |
 | * 1033 SBCR Register 4 3 |
 | * 1034 ANDR Register 4 3 |
 | * 1035 ORR Register 4 3 |
 | * 1036 EORR Register 4 3 |
 | * 1037 CMPR Register 4 3 |
 | * 1038 PSHSW Register 6 2 |
 | * 1039 PULSW Register 6 2 |
 | * 103A PSHUW Register 6 2 |
 | * 103B PULUW Register 6 2 |
 | 103F SWI2 Inherent 20 (22) 2 |
 | * 1040 NEGD Inherent 3 (2) 2 |
 | * 1043 COMD Inherent 3 (2) 2 |
 | * 1044 LSRD Inherent 3 (2) 2 |
 | * 1046 RORD Inherent 3 (2) 2 |
 | * 1047 ASRD Inherent 3 (2) 2 |
 | * 1048 ASLD/LSLD Inherent 3 (2) 2 |
 | * 1049 ROLD Inherent 3 (2) 2 |
 | * 104A DECD Inherent 3 (2) 2 |
 | * 104C INCD Inherent 3 (2) 2 |
 | * 104D TSTD Inherent 3 (2) 2 |
 | * 104F CLRD Inherent 3 (2) 2 |
 | * 1053 COMW Inherent 3 (2) 2 |
 | * 1054 LSRW Inherent 3 (2) 2 |
 | * 1056 RORW Inherent 3 (2) 2 |
 | * 1059 ROLW Inherent 3 (2) 2 |
 | * 105A DECW Inherent 3 (2) 2 |
 | * 105C INCW Inherent 3 (2) 2 |
 | * 105D TSTW Inherent 3 (2) 2 |
 | * 105F CLRW Inherent 3 (2) 2 |
 | * 1080 SUBW Immediate 5 (4) 4 |
 | * 1081 CMPW Immediate 5 (4) 4 |
 | * 1082 SBCD Immediate 5 (4) 4 |
 | 1083 CMPD Immediate 5 (4) 4 |
 | * 1084 ANDD Immediate 5 (4) 4 |
 | * 1085 BITD Immediate 5 (4) 4 |
 | * 1086 LDW Immediate 5 (4) 4 |
 | * 1088 EORD Immediate 5 (4) 4 |
 | * 1089 ADCD Immediate 5 (4) 4 |
 | * 108A ORD Immediate 5 (4) 4 |
 | * 108B ADDW Immediate 5 (4) 4 |
 | 108C CMPY Immediate 5 (4) 4 |
 | 108E LDY Immediate 5 (4) 4 |
 | * 1090 SUBW Direct 7 (5) 3 |
 | * 1091 CMPW Direct 7 (5) 3 |
 | * 1092 SBCD Direct 7 (5) 3 |
 | 1093 CMPD Direct 7 (5) 3 |
 | * 1094 ANDD Direct 7 (5) 3 |
 | * 1095 BITD Direct 7 (5) 3 |
 | * 1096 LDW Direct 6 (5) 3 |
 | * 1097 STW Direct 6 (5) 3 |
 | * 1098 EORD Direct 7 (5) 3 |
 | * 1099 ADCD Direct 7 (5) 3 |
 --

71

72

 Opcode and Mnemonics opcode reference table Page 16

 __
 | |
 | Opcode Mnemonic Mode Cycles Length |
 | (* 6309) |
 |--|
 | * 109A ORD Direct 7 (5) 3 |
 | * 109B ADDW Direct 7 (5) 3 |
 | 109C CMPY Direct 7 (5) 3 |
 | 109E LDY Direct 6 (5) 3 |
 | 109F STY Direct 6 (5) 3 |
 | * 10A0 SUBW Indexed 7+ (6+) 3+ |
 | * 10A1 CMPW Indexed 7+ (6+) 3+ |
 | * 10A2 SBCD Indexed 7+ (6+) 3+ |
 | 10A3 CMPD Indexed 7+ (6+) 3+ |
 | * 10A4 ANDD Indexed 7+ (6+) 3+ |
 | * 10A5 BITD Indexed 7+ (6+) 3+ |
 | * 10A6 LDW Indexed 6+ 3+ |
 | * 10A7 STW Indexed 6+ 3+ |
 | * 10A8 EORD Indexed 7+ (6+) 3+ |
 | * 10A9 ADCD Indexed 7+ (6+) 3+ |
 | * 10AA ORD Indexed 7+ (6+) 3+ |
 | * 10AB ADDW Indexed 7+ (6+) 3+ |
 | 10AC CMPY Indexed 7+ (6+) 3+ |
 | 10AE LDY Indexed 6 3+ |
 | 10AF STY Indexed 6 3+ |
 | * 10B0 SUBW Extended 8 (6) 4 |
 | * 10B1 CMPW Extended 8 (6) 4 |
 | * 10B2 SBCD Extended 8 (6) 4 |
 | 10B3 CMPD Extended 8 (6) 4 |
 | * 10B4 ANDD Extended 8 (6) 4 |
 | * 10B5 BITD Extended 8 (6) 4 |
 | * 10B6 LDW Extended 7 (6) 4 |
 | * 10B7 STW Extended 7 (6) 4 |
 | * 10B8 EORD Extended 8 (6) 4 |
 | * 10B9 ADCD Extended 8 (6) 4 |
 | * 10BA ORD Extended 8 (6) 4 |
 | * 10BB ADDW Extended 8 (6) 4 |
 | 10BC CMPY Extended 8 (6) 4 |
 | 10BE LDY Extended 7 (6) 4 |
 | 10BF STY Extended 7 (6) 4 |
 | 10CE LDS Immediate 4 4 |
 | * 10DC LDQ Direct 8 (7) 3 |
 | * 10DD STQ Direct 8 (7) 3 |
 | 10DE LDS Direct 6 (5) 3 |
 | 10DF STS Direct 6 (5) 3 |
 | * 10DC LDQ Indexed 8+ 3+ |
 | * 10DD STQ Indexed 8+ 3+ |
 | 10EE LDS Indexed 6+ 3+ |
 | 10EF STS Indexed 6+ 3+ |
 | * 10DC LDQ Extended 9 (8) 4 |
 | * 10DD STQ Extended 9 (8) 4 |
 | 10FE LDS Extended 7 (6) 4 |
 | 10FF STS Extended 7 (6) 4 |
 | * 1130 BAND Memory 7 (6) 4 |
 | * 1131 BIAND Memory 7 (6) 4 |
 | * 1132 BOR Memory 7 (6) 4 |
 | * 1133 BIOR Memory 7 (6) 4 |
 | * 1134 BEOR Memory 7 (6) 4 |
 | * 1135 BIEOR Memory 7 (6) 4 |
 --

73

74

Opcode and Mnemonics opcode reference table Page 17

 __
 | |
 | Opcode Mnemonic Mode Cycles Length |
 | (* 6309) |
 |--|
 | * 1136 LDBT Memory 7 (6) 4 |
 | * 1137 STBT Memory 8 (7) 4 |
 | * 1138 TFM R+,R+ Register 6+3n 3 |
 | * 1139 TFM R-,R- Register 6+3n 3 |
 | * 113A TFM R+,R Register 6+3n 3 |
 | * 113B TFM R,R+ Register 6+3n 3 |
 | * 113C BITMD Immediate 4 3 |
 | * 113D LDMD Immediate 5 5 |
 | 113F SWI2 Inherent 20 () 2 |
 | * 1143 COME Inherent 3 (2) 2 |
 | * 114A DECE Inherent 3 (2) 2 |
 | * 114C INCE Inherent 3 (2) 2 |
 | * 114D TSTE Inherent 3 (2) 2 |
 | * 114F CLRE Inherent 3 (2) 2 |
 | * 1153 COMF Inherent 3 (2) 2 |
 | * 115A DECF Inherent 3 (2) 2 |
 | * 115C INCF Inherent 3 (2) 2 |
 | * 115D TSTF Inherent 3 (2) 2 |
 | * 115F CLRF Inherent 3 (2) 2 |
 | 11AC CMPS Indexed 7 () 3 |
 | * 1180 SUBE Immediate 3 3 |
 | * 1181 CMPE Immediate 3 3 |
 | 1183 CMPU Immediate 5 (4) 4 |
 | * 1186 LDE Immediate 3 3 |
 | * 118B ADDE Immediate 3 3 |
 | 118C CMPS Immediate 5 (4) 4 |
 | * 118D DIVD Immediate 25 4 |
 | * 118E DIVQ Immediate 36 4 |
 | * 118F MULD Immediate 28 4 |
 | * 1190 SUBE Direct 5 (4) 3 |
 | * 1191 CMPE Direct 5 (4) 3 |
 | 1193 CMPU Direct 7 (5) 3 |
 | * 1196 LDE Direct 5 (4) 3 |
 | * 1197 STE Direct 5 (4) 3 |
 | * 119B ADDE Direct 5 (4) 3 |
 | 119C CMPS Direct 7 (5) 3 |
 | * 119D DIVD Direct 27 (26) 3 |
 | * 119E DIVQ Direct 36 (35) 3 |
 | * 119F MULD Direct 30 (29) 3 |
 | * 11A0 SUBE Indexed 5+ 3+ |
 | * 11A1 CMPE Indexed 5+ 3+ |
 | 11A3 CMPU Indexed 7+ (6+) 3+ |
 | * 11A6 LDE Indexed 5+ 3+ |
 | * 11A7 STE Indexed 5+ 3+ |
 | * 11AB ADDE Indexed 5+ 3+ |
 | 11AC CMPS Indexed 7+ (6+) 3+ |
 | * 11AD DIVD Indexed 27+ 3+ |
 | * 11AE DIVQ Indexed 36+ 3+ |
 | * 11AF MULD Indexed 30+ 3+ |
 | * 11B0 SUBE Extended 6 (5) 4 |
 --

75

 Opcode and Mnemonics opcode reference table Page 18

 __
 | |
 | Opcode Mnemonic Mode Cycles Length |
 | (* 6309) |
 |--|
 | * 11B1 CMPE Extended 6 (5) 4 |
 | 11B3 CMPU Extended 8 (6) 4 |
 | * 11B6 LDE Extended 6 (5) 4 |
 | * 11B7 STE Extended 6 (5) 4 |
 | * 11BB ADDE Extended 6 (5) 4 |
 | 11BC CMPS Extended 8 (6) 4 |
 | * 11BD DIVD Extended 28 (27) 4 |
 | * 11BE DIVQ Extended 37 (36) 4 |
 | * 11BF MULD Extended 31 (30) 4 |
 | * 11C0 SUBF Immediate 3 3 |
 | * 11C1 CMPF Immediate 3 3 |
 | * 11C6 LDF Immediate 3 3 |
 | * 11CB ADDF Immediate 3 3 |
 | * 11D0 SUBF Direct 5 (4) 3 |
 | * 11D1 CMPF Direct 5 (4) 3 |
 | * 11D6 LDF Direct 5 (4) 3 |
 | * 11D7 STF Direct 5 (4) 3 |
 | * 11DB ADDF Direct 5 (4) 3 |
 | * 11E0 SUBF Indexed 5+ 3+ |
 | * 11E1 CMPF Indexed 5+ 3+ |
 | * 11E6 LDF Indexed 5+ 3+ |
 | * 11E7 STF Indexed 5+ 3+ |
 | * 11EB ADDF Indexed 5+ 3+ |
 | * 11F0 SUBF Extended 6 (5) 4 |
 | * 11F1 CMPF Extended 6 (5) 4 |
 | * 11F6 LDF Extended 6 (5) 4 |
 | * 11F7 STF Extended 6 (5) 4 |
 | * 11FB ADDF Extended 6 (5) 4 |
 --

76

Mnemonics Reference Table Page 19

 Mnemonics Table

 | Mnem | Immed. | Direct | Indexed | Extended | Inherent |
 | | | | | | |
 | | OP ~/~ # | OP ~/~ + | OP ~/~ # | OP ~/~ # | OP ~/~ # |
 |--------+------------+------------+------------+------------+------------|
 | ABX | | | | | 3A 3/1 1 |
 | ADCA | 89 2 2 | 99 4/3 2 | A9 4+ 2+| B9 5/4 3 | |
 | ADCB | C9 2 2 | D9 4/3 2 | E9 4+ 2+| F9 5/3 3 | |
 |*ADCD | 10 5/4 4 | 10 7/5 3 | 10 7+/6+ 3+| 10 8/6 4 | |
 | | 89 | 99 | A9 | B9 | |
 |--------+------------+------------+------------+------------+------------|
 | ADDA | 8B 2 2 | 9B 4/3 2 | AB 4+ 2+| BB 5/4 3 | |
 | ADDB | CB 2 2 | DB 4/3 2 | EB 4+ 2+| FB 5/4 3 | |
 | ADDD | C3 4/3 3 | D3 6/4 2 | E3 6+/5+ 2+| F3 7/5 3 | |
 |*ADDE | 11 3 3 | 11 5/4 3 | 11 5+ 3+| 11 6/5 4 | |
 | | 8B | 9B | AB | BB | |
 |*ADDF | 11 3 3 | 11 5/4 3 | 11 5+ 3+| 11 6/5 4 | |
 | | CB | DB | EB | FB | |
 |*ADDW | 10 5/4 4 | 10 7/5 3 | 10 7+/6+ 3+| 10 8/6 4 | |
 | | 8B | 9B | AB | BB | |
 |--------+------------+------------+------------+------------+------------|
 |*AIM | | 02 6 3 | 62 7+ 3+| 72 7 4 | |
 |--------+------------+------------+------------+------------+------------|
 | ANDA | 84 2 2 | 94 4/3 2 | A4 4+ 2 | B4 5/4 3 | |
 | ANDB | C4 2 2 | D4 4/3 2 | E4 4+ 2 | F4 5/4 3 | |
 | ANDCC | 1C 3 2 | | | | |
 |*ANDD | 10 5/4 4 | 10 7/5 3 | 10 7+/6+ 3+| 10 8/6 4 | |
 | | 84 | 94 | A4 | B4 | |
 |--------+------------+------------+------------+------------+------------|
 | ASLA | | | | | 48 2/1 1 |
 | ASLB | | | | | 58 2/1 1 |
 |*ASLD | | | | | 10 3/2 2 |
 | | | | | | 48 |
 | ASL | | 08 6/5 2 | 68 6+ 2+| 78 7/6 3 | |
 |--------+------------+------------+------------+------------+------------|
 | ASRA | | | | | 47 2/1 1 |
 | ASRB | | | | | 57 2/1 1 |
 |*ASRD | | | | | 10 3/2 1 |
 | | | | | | 47 |
 | ASR | | 07 6/6 2 | 67 6+ 2+| 77 7/6 3 | |
 |--------+------------+------------+------------+------------+------------|
 | BITA | 85 2 2 | 95 4/3 2 | A5 4+ 2+| B5 5/4 3 | |
 | BITB | C5 2 2 | D5 4/3 2 | E5 4+ 2+| F5 5/4 3 | |
 | BITD | 10 5/4 4 | 10 7/5 3 | 10 7+/6+ 3+| 10 8/6 4 | |
 | | 85 | 95 | A5 | B5 | |
 | BITMD | 11 4 3 | | | | |
 | | 3C | | | | |
 |--------+------------+------------+------------+------------+------------|
 | CLRA | | | | | 4F 2/1 1 |
 | CLRB | | | | | 5F 2/1 1 |
 |*CLRD | | | | | 10 3/2 2 |
 | | | | | | 4F |
 |*CLRE | | | | | 11 3/2 2 |
 | | | | | | 4F |
 |*CLRF | | | | | 11 3/2 2 |
 | | | | | | 5F |
 |*CLRW | | | | | 10 3/2 2 |
 | | | | | | 5F |
 | CLR | | 0F 6/5 2 | 6F 6+ 2+| 7F 7/6 3 | |

77

 Mnemonics Reference Table Page 20

 | Mnem | Immed. | Direct | Indexed | Extended | Inherent |
 | | | | | | |
 | | OP ~/~ # | OP ~/~ + | OP ~/~ # | OP ~/~ # | OP ~/~ # |
 |--------+------------+------------+------------+------------+------------|
 | CMPA | 81 2 2 | 91 4/3 2 | A1 4+ 2+| B1 5/4 3 | |
 | CMPB | C1 2 2 | D1 4/3 2 | E1 4+ 2+| F1 5/4 3 | |
 | CMPD | 10 5/4 4 | 10 7/5 3 | 10 7+/6+ 3+| 10 8/6 4 | |
 | | 83 | 93 | A3 | B3 | |
 |*CMPE | 11 3 3 | 11 5/4 3 | 11 5+ 3+| 11 6/5 4 | |
 | | 81 | 91 | A1 | B1 | |
 |*CMPF | 11 3 3 | 11 5/4 3 | 11 5+ 3+| 11 6/5 4 | |
 | | C1 | D1 | E1 | F1 | |
 | CMPS | 11 5/4 4 | 11 7/5 3 | 11 7+/6+ 3+| 11 8/6 4 | |
 | | 8C | 9C | AC | BC | |
 | CMPU | 11 5/4 4 | 11 7/5 3 | 11 7+/6+ 3+| 11 8/6 4 | |
 | | 83 | 93 | A3 | B3 | |
 |*CMPW | 10 5/4 4 | 10 7/5 3 | 10 7+/6+ 3+| 10 8/6 4 | |
 | | 81 | 91 | A1 | B1 | |
 | CMPX | 8C 4/3 3 | 9C 6/4 2 | AC 6+/5+ 2+| BC 7/5 3 | |
 | CMPY | 10 5/4 4 | 10 7/5 3 | 10 7+/6+ 3+| 10 8/6 4 | |
 | | 8C | 9C | AC | BC | |
 |--------+------------+------------+------------+------------+------------|
 | COMA | | | | | 43 2/1 1 |
 | COMB | | | | | 53 2/1 1 |
 |*COMD | | | | | 10 3/2 2 |
 | | | | | | 43 |
 |*COME | | | | | 11 3/2 2 |
 | | | | | | 43 |
 |*COMF | | | | | 11 3/2 2 |
 | | | | | | 53 |
 |*COMW | | | | | 10 3/2 2 |
 | | | | | | 53 |
 | COM | | 03 6/5 2 | 63 6+ 2+| 73 7/6 3 | |
 |--------+------------+------------+------------+------------+------------|
 | CWAI | 3C 22/20 2 | | | | |
 |--------+------------+------------+------------+------------+------------|
 | DAA | | | | | 19 2/1 1 |
 |--------+------------+------------+------------+------------+------------|
 | DECA | | | | | 4A 2/1 1 |
 | DECB | | | | | 5A 2/1 1 |
 |*DECD | | | | | 10 3/2 2 |
 | | | | | | 4A |
 |*DECE | | | | | 11 3/2 2 |
 | | | | | | 4A |
 |*DECF | | | | | 11 3/2 2 |
 | | | | | | 5A |
 |*DECW | | | | | 10 3/2 2 |
 | | | | | | 5A |
 | DEC | | 0A 6/5 2 | 6A 6+ 2+| 7A 7/6 3 | |
 |--------+------------+------------+------------+------------+------------|
 |*DIVD | 11 25 3 | 11 27/26 3 | 11 27+ 3+| 11 28/27 4 | |
 | | 8D | 9D | AD | BD | |
 |*DIVQ | 11 34 4 | 11 36/35 3 | 11 36+ 3+| 11 37/36 4 | |
 | | 8E | 9E | AE | BE | |
 |--------+------------+------------+------------+------------+------------|
 |*EIM | | 05 6 3 | 65 7+ 3+| 75 7 4 | |
 |--------+------------+------------+------------+------------+------------|
 | EORA | 88 2 2 | 98 4/3 2 | A8 4+ 2+| B8 5/4 3 | |
 | EORB | C8 2 # | D8 4/3 2 | E8 4+ 2+| F8 5/4 3 | |
 |*EORD | 10 5/4 4 | 10 7/5 3 | 10 7+/6+ 3+| 10 8/6 4 | |
 | | 88 | 98 | A8 | B8 | |

78

 Mnemonics Reference Table Page 21

 | Mnem | Immed. | Direct | Indexed | Extended | Inherent |
 | | | | | | |
 | | OP ~/~ # | OP ~/~ + | OP ~/~ # | OP ~/~ # | OP ~/~ # |
 |--------+------------+------------+------------+------------+------------|
 | EXG | 1E 8/5 2 | | | | |
 |--------+------------+------------+------------+------------+------------|
 | INCA | | | | | 4C 2/1 1 |
 | INCB | | | | | 5C 2/1 1 |
 |*INCD | | | | | 10 3/2 2 |
 | | | | | | 4C |
 |*INCE | | | | | 11 3/2 2 |
 | | | | | | 4C |
 |*INCF | | | | | 11 3/2 2 |
 | | | | | | 5C |
 |*INCW | | | | | 10 3/2 2 |
 | | | | | | 5C |
 | INC | | 0C 6/5 2 | 6C 6+ 2+| 7C 7/6 3 | |
 |--------+------------+------------+------------+------------+------------|
 | JMP | | 0E 3/2 2 | 6E 3+ 2+| 7E 4/3 3 | |
 |--------+------------+------------+------------+------------+------------|
 | JSR | | 9D 7/6 2 | AD 7+/6+ 2+| BD 8/7 3 | |
 |--------+------------+------------+------------+------------+------------|
 | LDA | 86 2 2 | 96 4/3 2 | A6 4+ 2+| B6 5/4 3 | |
 | LDB | C6 2 2 | D6 4/3 2 | E6 4+ 2+| F6 5/4 3 | |
 | LDD | CC 3 3 | DC 5/4 2 | EC 5+ 2+| FC 6/5 3 | |
 |*LDE | 11 3 3 | 11 5/4 3 | 11 5+ 3+| 11 6/5 4 | |
 | | 86 | 96 | A6 | B6 | |
 |*LDF | 11 3 3 | 11 5/4 3 | 11 5+ 3+| 11 6/5 4 | |
 | | C6 | D6 | E6 | F6 | |
 |*LDQ | CD 5 5 | 10 8/7 3 | 10 8+ 3+| 10 9/8 4 | |
 | | | DC | EC | FC | |
 | LDS | 10 4 4 | 10 6/5 3 | 10 6+ 3+| 10 7/6 4 | |
 | | CE | DE | EE | FE | |
 | LDU | CE 3 3 | DE 5/4 2 | EE 5+ 2+| FE 6/5 3 | |
 |*LDW | 10 4 4 | 10 6/5 3 | 10 6+ 3+| 10 7/6 4 | |
 | | 86 | 96 | A6 | B6 | |
 | LDX | 8E 3 3 | 9E 5/4 2 | AE 5+ 2+| BE 6/5 3 | |
 | LDY | 10 4 4 | 10 6/5 3 | 10 6+ 3+| 10 7/6 4 | |
 | | 8E | 9E | AE | BE | |
 |*LDMD | 11 5 3 | | | | |
 | | 3D | | | | |
 |--------+------------+------------+------------+------------+------------|
 | LEAS | | | 32 4+ 2+| | |
 | LEAU | | | 33 4+ 2+| | |
 | LEAX | | | 30 4+ 2+| | |
 | LEAY | | | 31 4+ 2+| | |
 |--------+------------+------------+------------+------------+------------|
 | LSLA/LSLB/LSLD/LSL - Same as ASL |
 |--------+------------+------------+------------+------------+------------|
 | LSRA | | | | | 44 2/1 1 |
 | LSRB | | | | | 54 2/1 1 |
 |*LSRD | | | | | 10 3/2 2 |
 | | | | | | 44 |
 |*LSRW | | | | | 10 3/2 2 |
 | | | | | | 54 |
 | LSR | | 04 6/5 2 | 64 6+ 2+| 74 7/6 3 | |
 |--------+------------+------------+------------+------------+------------|
 | MUL | | | | | 3D 11/10 1 |
 |*MULD | 11 28 4 | 11 30/29 3 | 11 30+ 3+| 11 31/30 4 | |
 | | 8F | 9F | AF | BF | |

79

80

 Mnemonics Reference Table Page 22

 | Mnem | Immed. | Direct | Indexed | Extended | Inherent |
 | | | | | | |
 | | OP ~/~ # | OP ~/~ + | OP ~/~ # | OP ~/~ # | OP ~/~ # |
 |--------+------------+------------+------------+------------+------------|
 | NEGA | | | | | 40 2/1 1 |
 | NEGB | | | | | 50 2/1 1 |
 |*NEGD | | | | | 10 3/2 2 |
 | | | | | | 40 |
 | NEG | | 00 6/5 2 | 60 6+ 2+| 70 7/6 3 | |
 |--------+------------+------------+------------+------------+------------|
 | NOP | | | | | 12 2/1 1 |
 |--------+------------+------------+------------+------------+------------|
 |*OIM | | 01 6 3 | 61 7+ 3+| 71 7 4 | |
 |--------+------------+------------+------------+------------+------------|
 | ORA | 8A 2 2 | 9A 4/3 2 | AA 4+ 2 | BA 5/4 3 | |
 | ORB | CA 2 2 | DA 4/3 2 | EA 4+ 2 | FA 5/4 3 | |
 | ORCC | 1A 3/2 2 | | | | |
 |*ORD | 10 5/4 4 | 10 7/5 3 | 10 7+/6+ 3+| 10 8/6 4 | |
 | | 8A | 9A | AA | BA | |
 |--------+------------+------------+------------+------------+------------|
 | PSHS | 34 5+/4+ 2 | | | | |
 | PSHU | 36 5+/4+ 2 | | | | |
 |*PSHSW | 10 6 2 | | | | |
 | | 38 6 2 | | | | |
 |*PSHUW | 10 6 2 | | | | |
 | | 3A 6 2 | | | | |
 |--------+------------+------------+------------+------------+------------|
 | PULS | 35 5+/4+ 2 | | | | |
 | PULU | 37 5+/4+ 2 | | | | |
 |*PULSW | 10 6 2 | | | | |
 | | 39 | | | | |
 |*PULUW | 10 6 2 | | | | |
 | | 3B | | | | |
 |--------+------------+------------+------------+------------+------------|
 | ROLA | | | | | 49 2/1 1 |
 | ROLB | | | | | 59 2/1 1 |
 |*ROLD | | | | | 10 3/2 2 |
 | | | | | | 49 |
 |*ROLW | | | | | 10 3/2 2 |
 | | | | | | 59 |
 | ROL | | 09 6/5 2 | 69 6+ 2+| 79 7/6 3 | |
 |--------+------------+------------+------------+------------+------------|
 | RORA | | | | | 46 2/1 1 |
 | RORB | | | | | 56 2/1 1 |
 |*RORD | | | | | 10 3/2 2 |
 | | | | | | 46 |
 |*RORW | | | | | 10 3/2 2 |
 | | | | | | 56 |
 | ROR | | 06 6/5 2 | 66 6+ 2+| 76 7/6 3 | |
 |--------+------------+------------+------------+------------+------------|
 | RTI | | | | | 3B 6/17 1 |
 | | | | | | 15/17 |
 |--------+------------+------------+------------+------------+------------|
 | RTS | | | | | 39 5/4 1 |
 |--------+------------+------------+------------+------------+------------|
 | SBCA | 82 2 2 | 92 4/3 2 | A2 4+ 2+| B2 5/4 3 | |
 | SBCB | C2 2 2 | D2 4/3 2 | E2 4+ 2+| F2 5/2 3 | |
 |*SBCD | 10 5/4 4 | 10 7/5 3 | 10 7+/6+ 3+| 10 8/6 4 | |
 | | 82 | 92 | A2 | B2 | |
 |--------+------------+------------+------------+------------+------------|
 | SEX | | | | | 1D 2/1 1 |
 |*SEXW | | | | | 14 4 1 |

81

82

 Mnemonics Reference Table Page 23

 | Mnem | Immed. | Direct | Indexed | Extended | Inherent |
 | | | | | | |
 | | OP ~/~ # | OP ~/~ + | OP ~/~ # | OP ~/~ # | OP ~/~ # |
 |--------+------------+------------+------------+------------+------------|
 | STA | | 97 4/3 2 | A7 4+ 2+| B7 5/4 3 | |
 | STB | | D7 4/3 2 | E7 4+ 2+| F7 5/4 3 | |
 | STD | | DD 5/4 2 | ED 5+ 2+| FD 6/5 3 | |
 |*STE | | 11 5/4 3 | 11 5+ 3+| 11 6/5 4 | |
 | | | 97 | A7 | B7 | |
 |*STF | | 11 5/4 3 | 11 5+ 3+| 11 6/5 4 | |
 | | | D7 | E7 | F7 | |
 |*STQ | | 10 8/7 3 | 10 8+ 3+| 10 9/8 4 | |
 | | | DD | ED | FD | |
 |*STS | | 10 6/5 3 | 10 6+ 3+| 10 7/6 4 | |
 | | | DF | EF | FF | |
 | STU | | DF 5/4 2 | EF 5+ 2+| FF 6/5 3 | |
 |*STW | | 10 6/5 3 | 10 6+ 3+| 10 7/6 4 | |
 | | | 97 | A7 | B7 | |
 | STX | | 9F 5/4 2 | AF 5+ 2+| BF 6/5 3 | |
 | STY | | 10 6/5 3 | 10 6+ 3+| 10 7/6 4 | |
 | | | 9F | AF | BF | |
 |--------+------------+------------+------------+------------+------------|
 | SUBA | 80 2 2 | 90 4/3 2 | A0 4+ 2+| B0 5/4 3 | |
 | SUBB | C0 2 2 | D0 4/3 2 | E0 4+ 2+| F0 5/4 3 | |
 | SUBD | 83 4/3 3 | 93 6/4 3 | A3 6+/5+ 2+| B3 7/5 3 | |
 |*SUBE | 11 3 3 | 11 5/4 3 | 11 5+ 3+| 11 6/5 4 | |
 | | 80 | 90 | A0 | B0 | |
 |*SUBF | 11 3 3 | 11 5/4 3 | 11 5+ 3+| 11 6/5 4 | |
 | | C0 | D0 | E0 | F0 | |
 |*SUBW | 10 5/4 4 | 10 7/5 3 | 10 7+/6+ 3+| 10 8/6 4 | |
 | | 80 | 90 | A0 | B0 | |
 |--------+------------+------------+------------+------------+------------|
 | SWI | | | | | 3F 19/21 1 |
 | SWI2 | | | | | 10 20/22 2 |
 | | | | | | 3F |
 | SWI3 | | | | | 11 20/22 2 |
 | | | | | | 3F |
 |--------+------------+------------+------------+------------+------------|
 | SYNC | | | | | 13 2+/1+ 1 |
 |--------+------------+------------+------------+------------+------------|
 | TFR 1| 1F 6/4 2 | | | | |
 |--------+------------+------------+------------+------------+------------|
 |*TIM | | 0B 6 3 | 6B 7+ 3+| 7B 5 4 | |
 |--------+------------+------------+------------+------------+------------|
 | TSTA | | | | | 4D 2/1 1 |
 | TSTB | | | | | 5D 2/1 1 |
 |*TSTD | | | | | 10 3/2 2 |
 | | | | | | 4D |
 |*TSTE | | | | | 11 3/2 2 |
 | | | | | | 4D |
 |*TSTF | | | | | 11 3/2 2 |
 | | | | | | 5D |
 |*TSTW | | | | | 10 3/2 2 |
 | | | | | | 5D |
 | TST | | 0D 6/4 2 | 6D 6+/5+ 2+| 7D 7/5 3 | |

83

 Mnemonics Reference Table Page 24

 Branch Instructions
 _____________________ _____________________ _____________________
 | Mnem | Immed. | | Mnem | Immed. | | Mnem | Immed. |
 | | | | | | | | |
 | | OP ~/~ # | | | OP ~/~ # | | | OP ~/~ # |
 |--------+------------+ |--------+------------+ |--------+------------+
 | BCC | 24 3 2 | | BLE | 2F 3 2 | | BPL | 2A 3 2 |
 | LBCC | 10 5/6 4 | | LBLE | 10 5/6 4 | | LBPL | 10 5/6 4 |
 | | 24 | | | 2F | | | 2A |
 | BCS | 25 3 2 | | BLO | 25 3 2 | | BRA | 20 3 2 |
 | LBCS | 10 5/6 4 | | LBLO | 10 5/6 4 | | LBRA | 16 5/4 3 |
 | | 25 | | | 25 | | | |
 | BEQ | 27 3 2 | | BLS | 23 3 2 | | BRN | 21 3 2 |
 | LBEQ | 10 5/6 4 | | LBLS | 10 5/6 4 | | LBRN | 10 5/6 4 |
 | | 27 | | | 23 | | | 21 |
 | BGE | 2C 3 2 | | BLT | 2D 3 2 | | BSR | 8D 7/6 2 |
 | LBGE | 10 5/6 4 | | LBLT | 10 5/6 4 | | LBSR | 17 9/7 3 |
 | | 2C | | | 2D | | | |
 | BGT | 2E 3 2 | | BMI | 28 3 2 | | BVC | 28 3 2 |
 | LBGT | 10 5/6 4 | | LBMI | 10 5/6 4 | | LBVC | 10 5/6 4 |
 | | 2E | | | 28 | | | 28 |
 | BHI | 22 3 2 | | BNE | 26 3 2 | | BVS | 29 3 2 |
 | LBHI | 10 5/6 4 | | LBNE | 10 5/6 4 | | LBVS | 10 5/6 4 |
 | | 22 | | | 26 | | | 29 |
 | BHS | 2F 3 2 | --------------------- ---------------------
 | LBHS | 10 5/6 4 |
 | | 2F |

 Bit Transfer/Manipulation

 | Mnem | Direct | Post-Byte
 | | |
 | | OP ~/~ # | --------------------------
 |--------+------------| | 7 6 | 5 4 3 | 2 1 0 |
 |*BAND | 11 7/6 4 | --------------------------
 | | 30 |
 |*BIAND | 11 7/6 4 | Bits 7 and 6: Register
 | | 31 |
 |*BOR | 11 7/6 4 | 00 - CC 10 - B
 | | 32 | 01 - A 11 - Unused
 |*BIOR | 11 7/6 4 |
 | | 33 | Bits 5, 4 and 3: Source Bit
 |*BEOR | 11 7/6 4 |
 | | 34 | Bits 2, 1 and 0: Destination bit
 |*BIEOR | 11 7/6 4 |
 | | 35 |
 |*LDBT | 11 7/6 4 | Source/Destination Bit in binary form:
 | | 36 |
 |*STBT | 11 8/7 4 | 0 - 000 2 - 010 5 - 100 6 - 110
 | | 37 | 1 - 001 3 - 011 5 - 101 7 - 111

 Both the source and destination bit portions of the post-byte are
 looked at by the 6309 as the actual bit NUMBER to transfer/store. Use the
 binary equivilant of the numbers (0 thru 7) and position them into the bit
 area of the post byte.

84

85

 Mnemonics Reference Table Page 25

 Logical Memory Operations

 | Mnem | Immed. | Direct | Indexed | Extended | Inherent |
 | | | | | | |
 | | OP ~/~ # | OP ~/~ # | OP ~/~ # | OP ~/~ # | OP ~/~ # |
 |--------+------------+------------+------------+------------+------------|
 |*AIM | | 02 6 3 | 62 7+ 3+| 72 7 4 | |
 |*EIM | | 05 6 3 | 65 7+ 3+| 75 7 4 | |
 |*OIM | | 01 6 3 | 61 7+ 3+| 71 7 4 | |
 |*TIM | | 0B 6 3 | 6B 7+ 3+| 7B 5 4 | |

 Inter-Register Instructions Transfer/Exchange and
 __________________________________ Inter-Register Post Byte
 | Mnem | Forms | Register |
 | | | | _______________|_______________
 | | | OP ~/~ + | | | | | | | | | |
 |--------+------------+------------| | SOURCE | DESTINATION |
 |*ADCR | R0,R1 | 10 4 3 | |___|___|___|___|___|___|___|___|
 | | | 31 | HI NIBBLE | LOW NIBBLE
 |*ADDR | R0,R1 | 10 4 3 |
 | | | 30 |
 |*ANDR | R0,R1 | 10 4 3 | Register Field
 | | | 34 | (source or destination)
 |*CMPR | R0,R1 | 10 4 3 |
 | | | 37 | 0000 - D (A:B) 1000 - A
 |*EORR | R0,R1 | 10 4 3 | 0001 - X 1001 - B
 | | | 36 | 0010 - Y 1010 - CCR
 | EXG | R0,R1 | 1E 8/5 2 | 0011 - U 1011 - DPR
 |*ORR | R0,R1 | 10 4 3 | 0100 - S 1100 - 0
 | | | 35 | 0101 - PC 1101 - 0
 |*SBCR | R0,R1 | 10 4 3 | 0110 - W 1110 - E
 | | | 33 | 0111 - V 1111 - F
 |*SUBR | R0,R1 | 10 4 3 |
 | | | 32 |
 | TFR | R0,R1 | 1F 6/4 2 | The results of all Inter-Register
 |*TFM | R0+,R1+ | 11 6+3n 3 | operations are passsed into R1 with
 | | | 38 | the exception of EXG which exchanges
 |*TFM | R0-,R1- | 11 6+3n 3 | the values of registers and the TFR
 | | | 39 | block transfers.
 |*TFM | R0+,R1 | 11 6+3n 3 |
 | | | 3A | The register field codes %1100 and
 |*TFM | R0,R1+ | 11 6+3n 3 | %1101 are both zero registers. They
 | | | 3B | can be used as source or destination.

86

 Mnemonics Reference Table Page 26

 Indexed Address Modes and Post byte Information

 __
Non-Indirect Modes
Type
-------------------------+---------------+-----------+----------+-----+---
Constant offset from R
-------------------------+---------------+-----------+----------+-----+---
Accumulator offset
from R (Twos complement
*offset)
*
*
-------------------------+---------------+-----------+----------+-----+---
Auto increment and
decrement of R
-------------------------+---------------+-----------+----------+-----+---
Constant offset from PC
(Twos complement offset)
-------------------------+---------------+-----------+----------+-----+---
*Relative to W
*(Twos complement offset)
* AutoIncrement W
 |* AutoDecrement W | Decrement 2 | ,--W | 11101111 | 3/1 | 0 |
 |--|
 | Indirect Modes |
 |-------------------------+---------------+-----------+------------+---+---|
Constant offset from R	No offset	[,R]	1rr10100	3	0
	5 bit offset	[n,R]	Defaults to 8 bit		
	8 bit offset	[n,R]	1rr11000	4	1
	16 bit offset	[n,R]	1rr11001	7	2
-------------------------+---------------+-----------+------------+---+---					
Accumulator offset	A - Register	[A,R]	1rr10110	4	0
from R (Twos complement	B - Register	[B,R]	1rr10101	4	0
*offset)	E - Register	[E,R]	1rr10111	1	0
*	F - Register	[F,R]	1rr11010	1	0
	D - Register	[D,R]	1rr11011	4	0
*	W - Register	[W,R]	1rr11110	4	0
-------------------------+---------------+-----------+------------+---+---					
Auto Increment and	Increment 2	[,R++]	1rr10001	6	0
decrement of R	Decrement 2	[,--R]	1rr10011	6	0
-------------------------+---------------+-----------+------------+---+---					
Constant offset from PC	8 bit offset	[n,PC]	1xx11100	4	1
(Twos complement offset)	16 bit offset	[n,PC]	1xx11101	8	2
-------------------------+---------------+-----------+------------+---+---					
Extended indirect	16 bit address	[n]	10011111	5	2
-------------------------+---------------+-----------+------------+---+---					
*Relative to W	No Offset	[,W]	10010000	0	0
*(Twos complement offset)	16 bit offset	[n,W]	10110000	5	2
* AutoIncrement W	Increment 2	[,W++]	11010000	3	0
* AutoDecrement W	Decrement 2	[,--W]	11110000	3	0
 --
 rr = X, Y, U or S X = 00 Y = 01
 xx = Doesn't care U = 10 S = 11
 + and + indicates the additional number of cycles and bytes for the
 ~ # particular variation

87

88

Mnemonics Reference Table Page 27

 Register Descriptions

 | X - 16 bit index register |
 | Y - 16 bit index register |
 | U - 16 bit user-stack pointer |
 | S - 16 bit system-stack pointer |
 | PC - 16 bit program counter register |
 |*V - 16 bit variable register (inter-register instructions only) |
 |*0 - 8/16 bit zero register (inter-register instructions only) |
 |---|
 | A - 8 bit accumulator | |
 | B - 8 bit accumulator | Accumulator structure map: |
 |*E - 8 bit accumulator | ----- ----- ----- ----- |
 |*F - 8 bit accumulator | | A | B | E | F | |
 | D - 16 bit concatenated reg.(A B) | -----------+----------- |
 |*W - 16 bit concatenated reg.(E F) | | D | W | |
 |*Q - 32 bit concatenated reg.(D W) | ----------------------- |
 |------------------------------------| | Q | |
 |*MD - 8 bit mode/error register | ----------------------- |
 | CC - 8 bit condition code register | bit 31 24 15 8 0 |
 | DP - 8 bit direct page register | |

 * Indicates new registers in 6309 CPU.

 Push/Pull Order of Stack

 Pull order Push/Pull Post byte
 | -------------------------------
 \|/ | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
 ' -------------------------------
 CC | | | | | | | |____CCr
 A\ | | | | | | |________A
 B/ D\ Q | | | | | |____________B
 E\ W/ | | | | |________________DPr
 F/ | | | |____________________X
 DP | | |________________________Y
 X-hi | |____________________________S/U
 X-low |________________________________PC
 Y-hi
 Y-low
 U/S-hi
 U/S-low
 PC-hi
 PC-low
 .
 /|\
 |
 Push order

 Condition Code Register

 | E | F | H | I | N | Z | V | C |

 Entire flag____| | | | | | | |____Carry flag
 FIRQ mask________| | | | | |________Overflow
 Half carry____________| | | |____________Zero
 IRQ mask________________| |________________Negative

 The PSH(s,u) and PUL(s,u) instructions require one additional
 cycle for each byte pushed or pulled.

89

90

Alan DeKok's addition to the above...

 The new features of the 6309 are closely related to the changes in
design from the 6809. The 6309 is micro-coded, which allowed the
designers to easily add new instrctions and registers. It also has a
one byte pre-fetch 'cache', and an internal pipeline. The 'cache'
enables the 6309 to execute
instructions like 'lsld' (2-bytes) in one clock cycle. The design of
the 6809 series allows them to read one byte per clock cycle MAXIMUM, but there
is a catch. Most instructions take more clock cycles to execute than
bytes they contain. While the 6309 is performing internal
calculations, the 'cache' hardware goes and reads the next instruction
byte, leaving only one additional byte to be read to execute the 'lsld'.
Reading this byte requires one clock cycle, and then the instruction
is executed while the CPU fetches the next instruction.

 The 6309 has a true 16-bit internal design.
e.g. the EXG instruction operates as
6809: read op-code
 read inter-register byte (r0,r1)
 r0_high -> temp_high
 r0_low -> temp_low
 r1_high -> r0_high
 r1_low -> r0_low
 r0_high -> r1_high
 r0_low -> r1_low

 8 actions, 8 clock cycles.

6809: read op-code
 read inter-register byte (r0,r1)
 r0 -> temp
 r1 -> r0
 r0 -> r1

 5 actions, 5 clock cycles.

 The 6309 native mode instruction execution clock lengths can be mostly accounted
for by accounting for the pre-fetch cache and the internal 16-bit ALU.

 TFM has some caveats. TFM r1-,r2- should NOT be used to setup the
stack, as it's a POST-decrement instruction, not PRE-decrement.

 Watch out for TFM r1,r2+ if you're reading from a peripherial.
Why? The TFM uses the 1-byte 'cache' as an internal buffer for the
byte that it's currently moving. The TFM instruction is interruptible
(the only instruction that is), and code execution during the
interrupt will destroy the byte in the cache.

 On returning from the interrupt, the TFM will read the FROM
address again to get the lost byte, which may be the wrong one. The
visible effect of this is that block moves sometimes have a byte
missing from the middle, and everything after that byte shifted down
one address.

 The W,E, and F registers do not have the full immediate addressing
mode capabilities that D,A, and B do. SBC, AND, BIT, EOR, ADC, OR
with E,F,W are available only in register-register mode. LSR, ROR,
ROL are available for W but not for E,F. ASR, ASL, LSL, NEG do not
exist at all for W,E,F.

 ASL can sort of be implemented by doing a ADDR R1,R1. (see later)

 You can also do things like 'leax u,x' by doing a ADDR u,x.

91

 Sadly, many of the new 6309 instructions are useless in everyday
life. The bit manipulation instructions are interesting, but slow and
mostly of limited value. Same with much of the DIV/MUL higher math. The
AIM, etc. are very useful, though.

 Programmer recommendations

 Try to stay away from using the W register. It's got another pre-byte
(like instructions using 'Y' or 'S'), and is correspondingly larger
and slower. E and F are best used mainly instead of pushing loop counters onto
the stack when you're running out of registers.

 The V register is mostly pointless. If you're doing context
switches, it isn't saved across interrupts unless you do so manually.
Shuffling data back and forth between other registers and V is a lot
of trouble. Any math, etc. involving V is generally done much faster
using a real register. After going through 1meg+ of 6309 assembly code
which is everything from an OS kernel to serial drivers to graphics
drivers, I've never seen a use for the V register.

 Of course, you could put '$FFFF' into V, and have registers for
reg-reg addressing modes with bits all zero (0), and another with bits all
1 (V).

 Pseudo-nops: tfr 0,0; exg 0,0

 Extremely small software timing loops with large delays may be generated
by performing a 'LDW',and then 'TFM 0+,0+'.

 Many programs can be executed in 6309 native mode by patching only
the IRQ code, if it accesses the stack. A 'LDMD #$01' may be
performed as soon as your program starts executing, and will see an
immediate 10-15% speed increase. Software timing loops must be
checked!

 Opcodes Hitachi left out of the 6309: and some round-about equivalents

E/F/W

ADCr: ADCR 0,r
ANDr: ; ANDR V,r
ASLr/LSLr: ADDR r,r
ASRr
BITr
EORr
NEGr: COMr INCr
ORr
SBCr: SBCR Z,r

E/F

LSRr
ROLr: ADCR r,r
RORr

Q (Long word =W1:W0)

ADDQ: ADDW W0; ADCD W1
SUBQ: SUBW W0; SBCD W1
ASLQ: ASLW ; ROLD
ROLQ: ROLW ; ROLD
LSRQ: LSRD ; RORW
RORQ: RORD ; RORW
ASRQ: ASRD ; RORW
COMQ: COMD ; COMW
NEGQ: COMD ; COMW ; SBCR 0,D

92

93

