
4D LABS

GOLDELOX-DOS
Command Set 

Software Interface Specification

Document Date: 2nd April 2009
Document Revision: 1.0

© 2009 4D Labs www.4d-Labs.com Page 1 of 16



GOLDELOX-DOS Command Set - Software Interface Specification

Table of Contents

1. Host Interface...................................................................................................................3
1.1  Command Protocol : Flow Control...............................................................................3
1.2  Serial Setup : Auto-Baud..............................................................................................3
1.3  Powerup and Reset......................................................................................................3

2. Command Set...................................................................................................................5
2.1  General Commands.....................................................................................................5

2.1.1  Autobaud.............................................................................................................5
2.1.2  Version/Device Info Request................................................................................5
2.1.3  FAT Protect...........................................................................................................6

2.2  Low-Level (RAW) Disk Drive Commands......................................................................6
2.2.1  Initialise Disk Drive Memory Card........................................................................7
2.2.2  Read Sector Block Data........................................................................................7
2.2.3  Write Sector Block Data.......................................................................................7
2.2.4  Set Memory Address............................................................................................8
2.2.5  Read Byte Data.....................................................................................................8
2.2.6  Write Byte Data....................................................................................................9

2.3  FAT-Level (DOS) Disk Drive Commands........................................................................9
2.3.1  Read File...............................................................................................................9
2.3.2  Write File ...........................................................................................................11
2.3.3  Erase File............................................................................................................14
2.3.4  List Directory......................................................................................................14
2.3.5  Initialise Disk Drive Memory Card......................................................................15

Proprietory Information...................................................................................................16
Disclaimer of Warranties & Limitation of Liability........................................................16

© 2009 4D Labs www.4d-Labs.com Page 2 of 16



GOLDELOX-DOS Command Set - Software Interface Specification

1. Host Interface

The GOLDELOX-DOS chip is a slave peripheral device and it provides a bidirectional serial interface to a host 
controller via its UART. All communications between the host and the device occur over this serial interface. 
The  protocol  is  simple  and  easy  to  implement,  without  the  overhead  of  complicated  packet-based 
protocols.  

 Serial Data Format: 8 Bits, No Parity, 1 Stop Bit.

Serial data is true and not inverted.

1.1 Command Protocol : Flow Control

The GOLDELOX-DOS is a slave device and all communication and events must be initiated by the host. Each 
command is  made  up  of  a  sequence  of  data  bytes.  When a  command is  sent  to  the  device  and  the 
operation is completed, it will always return a response. For a command that has no specific response the 
device will  send back a single acknowledge byte called the ACK (06hex), in the case of success, or NAK 
(15hex), in the case of failure.

Commands  having  specific  responses  may  send  back  varying  numbers  of  bytes,  depending  upon  the 
command and response. It will take the device a certain amount of time to respond, depending on the 
command type and the operation that has to be performed. If the GOLDELOX-DOS chip receives a command 
that it does not understand it will reply back with a negative acknowledge called the NAK (15hex). Since a 
command is only identified by its position  in the sequence of data bytes sending incorrect data can resultʻ ʼ  
in wildly incorrect operation.

1.2 Serial Setup : Auto-Baud

The GOLDELOX-DOS has an auto-baud feature which can automatically detect the host speed and can set its 
internal baud rate to operate from 300 to 256K baud. Prior to any commands being sent to the module, it 
must first be initialized by sending the auto-baud character ‘U’ (55hex) after any power-up or reset. This will 
allow the module to determine and lock on to the baud rate of the host automatically without needing any 
further setup. Once the device has locked onto the host baud rate it wil respond with an ACK byte (06hex).

 Auto-Bauding must be performed each time the device is powered up or reset.

If  the  host  needs to  change the baud rate,  the  GOLDELOX-DOS must  be  power/reset  cycled.  The “U” 
command cannot be used to change the baud rate during the middle of normal usage.

1.3 Powerup and Reset

When the GOLDELOX-DOS device comes out of a power up or external reset, a sequence of events must be 
observed before attempting to communicate with the module:

• Allow up to 500ms delay after power-up or reset for the GOLDELOX-DOS to settle. Do not attempt 

© 2009 4D Labs www.4d-Labs.com Page 3 of 16



GOLDELOX-DOS Command Set - Software Interface Specification

to communicate with the device during this period. The device may send garbage on its TX Data line 
during this period, the host should disable its Rx Data reception.

• The host transmits the auto-baud character (capital U,  55hex) as the first command so the device 
can lock onto the host’s baud rate. 

• Once the host receives the ACK, the GOLDELOX-DOS is now ready to accept Disk Drive commands 
from the host.

© 2009 4D Labs www.4d-Labs.com Page 4 of 16

HOST                                   GOLDELOX-DOS

                 Auto-Baud ('U'', 55h)

                             ACK (06h)

                                  .....
                                  .....

PowerUp/Reset  
Delay



GOLDELOX-DOS Command Set - Software Interface Specification

2. Command Set

The data storage and retrieval takes place via the serial interface. A handful of easy to learn commands 
provide complete access to the memory card for data reads and writes. The simplified command set also 
means that very low overheads are imposed on the host controller. Commands and responses can be either 
single bytes or many bytes. All commands return a response, either an acknowledge or data. 

The command set is grouped into 3 sections: 

• General Commands
• Low-Level (RAW) Disk Drive Commands
• FAT-Level Disk Drive Commands

Each Command set is described in detail in the following sections.

Seperation characters such as commas ',' or spaces ' ' or brackets'(' ')' between bytes that are 

shown in the command/response syntax descriptors are purely for legibility purposes and must 
not be considered as part of any transmitted/received data unless specifically stated.

2.1 General Commands

2.1.1 Autobaud

Command cmd

cmd 55(hex) or U(ascii) : Command header byte

Response acknowledge

acknowledge 06(hex) : ACK byte

Description This must be the very first command sent to the GOLDELOX-DOS after powerup or 
reset. This will enable the device to lock on to the host baud rate.

2.1.2 Version/Device Info Request

Command cmd

cmd 56(hex) or V(ascii) : Command header byte

Response device_type, silicon_rev, pmmc_rev, reserved1, reserved2 

© 2009 4D Labs www.4d-Labs.com Page 5 of 16

HOST                                   GOLDELOX-DOS

                       Command

                             Response

                                



GOLDELOX-DOS Command Set - Software Interface Specification

device_type 03(hex) : This byte indicates the device type is GOLDELOX-DOS

silicon_rev This byte indicates the GOLDELOX silicon revision

pmmc_rev This byte indicates the PmmC firmware revision

reserved1 This byte is reserved for future support. If the value is  0 then ignore it

reserved2 This byte is reserved for future support. If the value is  0 then ignore it

Description This  command  requests  all  the  necessary  information  from  the  device  about  its 
characteristics and capability.

2.1.3 FAT Protect

Command cmd, mode, value

cmd 59(hex) or Y(ascii) : Command header byte

mode 08(hex) : FAT protection byte

value 00(hex) : Protection = OFF
01(hex) : Protection = ON

Response acknowledge

acknowledge 06(hex) : ACK byte if sucessful
15(hex) : NAK byte if unsucessful or card not present

Description: This command protects the FAT file system (if present) on the card from being read or 
written to by low level (RAW) commands.

If the memory card contains any FAT (FAT16 or FAT32) partition, when the initialize 
command is executed or the device comes out of a reset, FAT Protection is turned ON 
automatically. This means the host will not be able to access the card using Low-Level 
(RAW) read or write commands unless it subsequently turns off the FAT protection.

For a ‘Non Standard’ card containing two partitions, one FAT and one RAW (Partition 
type DAhex), the default is ON. In this case FAT reads and writes will occur to the FAT 
partition and RAW reads and writes will be offset into the RAW partition. i.e. a write 
to sector 0 will write to sector 0 in the raw partition.

FAT32 is currently not supported. If you mount a FAT32 formatted disk, you will not 
be able to access it  at all,  both FAT and RAW commands will  fail.  You can either 
reformat the memory card as FAT or unprotect the card and replace sector 0 with 512 
hex 00s.

2.2 Low-Level (RAW) Disk Drive Commands

The following commands are related to Low-Level  Disk Drive operations and they are described in this 
section. If the memory card contains any FAT (FAT16 or FAT32) partition, when the initialize command is 
executed or the device comes out of a reset, FAT Protection is turned ON automatically. This means the host 
will not be able to access the card using Low-Level (RAW) read or write commands unless it subsequently 
turns off the FAT protection. Use the “FAT Protect” command described in section 2.1.3.

© 2009 4D Labs www.4d-Labs.com Page 6 of 16



GOLDELOX-DOS Command Set - Software Interface Specification

2.2.1 Initialise Disk Drive Memory Card

Command ext_cmd, cmd

ext_cmd 40(hex) or @(ascii) : Extended Command header byte

cmd 69(hex) or i(ascii) : Command header byte

Response acknowledge

acknowledge 06(hex) : ACK byte if sucessful
15(hex) : NAK byte if unsucessful or card not present or if there is no 
RAW partition and the FAT protection is turned ON.

Description This  command initialises  the memory card.  The memory card is  always initialised 
upon Power-Up or Reset cycle, if the card is present. If the card is inserted after the 
power up or a reset then this command must be used to initialise the card. 

If there is any FAT (FAT16 or FAT32) partition on the card, using this command will 
automatically protect the card and turn FAT Protection ON. This is implemented for 
safety reasons so that any important information in the card is not overwritten. The 
GOLDELOX-DOS device will not respond to any of the Low-Level (RAW) commands in 
this  section  until  FAT  protection  is  turned  OFF.  Use  the  “FAT  Protect”  command 
described in section 2.1.3. 

Note! There is no card insert/remove auto detect facility. This command is duplicated 
also in section 2.3. It is the same command, there is no difference.

2.2.2 Read Sector Block Data

Command ext_cmd, cmd, SectorAdd(hi:mid:lo)

ext_cmd 40(hex) or @(ascii) : Extended Command header byte

cmd 52(hex) or R(ascii) : Command header byte

SectorAdd A 3 byte sector address (big endian). Sector Address range from 0 to 
16,777,215 depending on the capacity of the card. Each sector is 512 
bytes in size. There are 2048 sectors per every 1Mb of card memory.

Response data(1..512) 

data 512 bytes of sector data

Description This command will return 512 bytes of data relating to a sector.

2.2.3 Write Sector Block Data

Command ext_cmd, cmd, SectorAdd(hi:mid:lo), data(1..512)

ext_cmd 40(hex) or @(ascii) : Extended Command header byte

cmd 57(hex) or W(ascii) : Command header byte

SectorAdd A 3 byte sector address (big endian)

data 512 bytes of sector data. Data length must be  512 bytes.

Response acknowledge 

acknowledge 06(hex) : ACK byte if sucessful
15(hex) : NAK byte if unsucessful or card not present or if there is no 
RAW partition and the FAT protection is turned ON.

© 2009 4D Labs www.4d-Labs.com Page 7 of 16



GOLDELOX-DOS Command Set - Software Interface Specification

Description This command allows downloading and writing blocks of sector data to the card. The 
data block must always be 512 bytes in length. For large volumes of data such as 
images, the data must be broken up into multiple sectors (chunks of 512 bytes) and 
this command then maybe used many times until all of the data is written. If the data 
block to be written is less than 512 bytes in length, then make sure the rest of the 
remaining data are padded with 00hex or FFhex (it can be anything). 

If only few bytes of data are to be written then the Write Byte command can be used.
Once this command is sent, the device will take a few milliseconds to write the data 
into its memory card and at the end of which it will respond.

Only data(1..512) are written to the sector. Other bytes in the command message do 
not get written.

2.2.4 Set Memory Address

Command ext_cmd, cmd, Address(Umsb:Ulsb:Lmsb:Llsb)

ext_cmd 40(hex) or @(ascii) : Extended Command header byte

cmd 41(hex) or A(ascii) : Command header byte

Address A 4 byte card memory address (big endian) for byte wise access.  

Response acknowledge

acknowledge 06(hex) : ACK byte if sucessful
15(hex) : NAK byte if unsucessful or card not present or if there is no 
RAW partition and the FAT protection is turned ON.

Description This  command sets the internal  memory address pointer for byte wise reads and 
writes.  After  a  byte  read  or  write,  the  memory  Address  pointer  is  automatically 
incremented internally to the next byte address location. 

2.2.5 Read Byte Data

Command ext_cmd, cmd

ext_cmd 40(hex) or @(ascii) : Extended Command header byte

cmd 72(hex) or r(ascii) : Command header byte

Response data_byte

data_byte 1 byte of card data

Description This command provides a means of reading a single byte of data back from the card. 
Before this command can be used, memory address location must be set using the 
Set Memory Address command. Once this command is sent, the device will return 1 
byte of data relating to that memory location set by the memory address pointer. The 
memory  address  location  pointer  is  automatically  incremented  to  the  next  byte 
address location.

2.2.6 Write Byte Data

Command ext_cmd, cmd, data

ext_cmd 40(hex) or @(ascii) : Extended Command header byte

cmd 77(hex) or w(ascii) : Command header byte

© 2009 4D Labs www.4d-Labs.com Page 8 of 16



GOLDELOX-DOS Command Set - Software Interface Specification

data 1 byte of card data

Response acknowledge

acknowledge 06(hex) : ACK byte if sucessful
15(hex) : NAK byte if unsucessful or card not present or if there is no 
RAW partition and the FAT protection is turned ON.

Description This  command permits  writing  single bytes of  data to  the card.  This  is  useful  for 
writing small chunks of data at irregular intervals quickly. For large data blocks it is 
more efficient to use the Write Sector Data command described previously. 

Before this command can be used, the card memory address location must be set 
using the Set Memory Address command. Once the Write Byte command is sent, a 
single byte of data will be stored to that memory location set by the memory address 
pointer.  The  memory  address  pointer  is  automatically  incremented  to  the  next 
location.

Only the data byte is written. Other bytes in the command message are not stored.

2.3 FAT-Level (DOS) Disk Drive Commands

The following commands are related to FAT-Level  Disk Drive operations and they are described in this 
section. If the memory card contains a FAT (or FAT32) partition when the initialize command is executed, 
FAT Protection is turned ON automatically. This means the host will not be able to access the card using 
Low-Level (RAW) read or write commands unless it subsequently turns off the FAT protection.

FAT32 is currently not supported, if you mount a FAT32 formatted disk, you will not be able to access it at 
all, both FAT and RAW commands will fail. You can either reformat the memory card as FAT or unprotect the 
card and replace sector 0 with 512 hex 00s.

 FAT16 is referred to as FAT throughout this documentation. At the time of writing, FAT32 is 

not supported. Future FAT32 and larger capacity (upto 32GB) card support is currently planned. 

2.3.1 Read File

Command ext_cmd, cmd, handshaking, “file_name”, terminator

ext_cmd 40(hex) or @(ascii) : Extended Command header byte

cmd 61(hex) or a(ascii) : Command header byte

handshaking How often the host sends an ACK(06hex) to request more data during 
transmission:-

00 – No handshaking, Use only for small files (<= 512 bytes)
01 – Once for each byte
02 – Once for each two bytes
...
50(32hex), maximum allowed

file_name The filename is 1-12 chars long with an assumed '.' between chars 8 
and 9, if there is not one specified in the filename.

© 2009 4D Labs www.4d-Labs.com Page 9 of 16



GOLDELOX-DOS Command Set - Software Interface Specification

terminator The file_name string must be terminated with a NULL, 00(hex).

Response file_size(Umsb:Ulsb:Lmsb:Llsb), file_data(1...N), acknowledge

file_size 4 bytes of file size (big endian format).

file_data Complete file data block : No Handshaking
Block of file data : block size determined by value set in handshaking.

acknowledge 06(hex) : ACK byte if sucessful
15(hex) : NAK byte if unsucessful

Description Using this command, the host can read a DOS compatible (FAT) file from the memory 
card. Because the time taken to process the read bytes varies, a technique is required 
to ensure that the host communications buffer does not overflow and data is not lost. 
This is implemented by  a simple  handshaking protocol where the GOLDELOX-DOS 
will  break up the file into smaller data blocks.  When the host receives a block, it 
sends an ACK(06hex) to request the next block of data. The size of the data block is 
initially  set  by  the  host  in  the  command  packet,  specified  by  the  value  in  the 
“handshaking” byte. The larger the value the better, as long as the host system can 
buffer the incoming block size. Setting this value too low will slow the transfer. 

The first 4 bytes sent by the device, after receiving the command packet, represent 
the size of the requested file (Umsb:Ulsb:Lmsb:Llsb). The host then responds with an 
ACK(06hex) to indicate it wants the file, or NAK(15hex) if it wishes to terminate the 
receive. The first block of  data bytes (block size set by the handshaking value) of the 
file are then sent from the device, the host then responds with another ACK(06hex) 
to receive the next block of bytes. This process continues until all of the file data has

 been received. 

The device responds with a final ACK if the transfer completes successfully, otherwise 
it responds with a NAK. The final ACK is not part of the handshaking. 

© 2009 4D Labs www.4d-Labs.com Page 10 of 16



GOLDELOX-DOS Command Set - Software Interface Specification

© 2009 4D Labs www.4d-Labs.com Page 11 of 16

Diagram 1: Read File – No Handshaking

        HOST                                            GOLDELOX-DOS

[40 61 00 41 42 43 44 00]

<00 00 00 19>

Read a FAT file 
‘ABCD’, no 
handshaking

It’s 25 bytes long

[06]

<31 32 33 34 35 36 37 38 39 30 31 32 33 
34 35 36 37 38 39 30 31 32 33 0D 0A 06>

Fine give it to me 
(could have been 
NAK, abort)

Here it is. (Note 06hex, 
ACK at end)

Diagram 2: Read File - Handshaking other than 0

        HOST                                            GOLDELOX-DOS

[40 61 05 41 42 43 44 00]

<00 00 00 19>

Read a FAT file 
‘ABCD’, 
handshaking  5

It’s 25 bytes long

[06]

<31 32 33 34 35>
Fine, give it to me. 
(could have been 
NAK, abort)

Here is the first 5 bytes. 

[06]

<36 37 38 39 30>
Give me the next  5. 
(could have been 
NAK, abort)

Here is the next 5 bytes. 

And another 5 bytes

There you go

Last 5. Note the final 
ACK (06 hex). It is not 
included in the 
handshaking count

More Please

Last time

And again

[06]

<31 32 33 34 35>

[06]

<36 37 38 39 30>

[06]

<31 32 33 0D 0A 06>



GOLDELOX-DOS Command Set - Software Interface Specification

2.3.2 Write File 

Command ext_cmd, cmd, options, “file_name”, terminator,  filesize(Umsb:Ulsb:Lmsb:Llsb), 
file_data(1 .. N)

ext_cmd 40(hex) or @(ascii) : Extended Command header byte

cmd 74(hex) or t(ascii) : Command header byte

options Controls handshaking (how often the device sends an ACK to request 
more data from the host) and whether an existing file is appended to. 
Handshaking:

00 – No handshaking, limit this to small files (<= 100 bytes)
01 – Once for each byte
02 – Once for each two bytes
...
50(32hex), maximum allowed

Append Mode:
00(hex)  –  No  Append,  file  will  be  created  (or  overwritten  if  it 
exists).
80(hex) – Append mode, file will be appended to (or created if it 
doesn’t exist).

Note:
The two options are added, or ORed together to produce the final 
options,  eg  82(hex)  would  indicate  handshaking  for  every  two 
bytes and Append mode.

file_name The filename is 1-12 chars long with an assumed '.' between chars 8 
and 9, if there is not one specified in the filename.

terminator The file_name string must be terminated with a NULL, 00(hex).

file_size 4 bytes of file size (big endian format).

file_data Complete file data block : No Handshaking
Block of file data : block size determined by value set in handshaking.

Response acknowledge

acknowledge 06(hex) : ACK byte if sucessful
15(hex) : NAK byte if unsucessful

Description This command allows the host to write a DOS compatible (FAT) file to the memory 
card. The GOLDELOX-DOS device serial port (UART), has a buffer size of 512 bytes for 
capturing  incoming data from the host. If this buffer fills up and overflows, data will 
be lost. Therefore the host must allow the device enough time to write its buffer to 
the memory card so it can then receive further file data from the host. For small files 
(less than 100 bytes in the append mode) the host can send the complete file data in 
one attempt. However, for larger files a simple handshaking protocol is implemented 
where the host sends the file data in small blocks. Using this handshaking method, 
the host always waits for an ACK from the device before sending the next block of 
data. The size of the data block is initially set by the host in the command packet, 
specified by the handshaking value in the “options” byte. The larger the value the 
better. Setting it too low will slow the transfer.  The first ACK is always sent by the 
device, after the filesize parameter is transmitted by the host, or this could also be a 
NAK in which case one of the parameters is invalid or a file system error occurred. 
Note: Do not set handshaking to zero if the file size is larger than 512 bytes.

© 2009 4D Labs www.4d-Labs.com Page 12 of 16



GOLDELOX-DOS Command Set - Software Interface Specification

© 2009 4D Labs www.4d-Labs.com Page 13 of 16

Diagram 3: Write File - No Handshaking

        HOST                                            GOLDELOX-DOS

[40 74 00 41 42 43 44 00 00 00 00 00 19]

<06>

Write a  FAT file 
“ABCD”, 25 bytes, 
no handshaking

OK, ready to receive

[31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 
36 37 38 39 30 31 32 33 0D 0A ]

<06>Here it is

Got it, thanks

Illustration 4: Write File - Handshaking Other than 0

        HOST                                            GOLDELOX-DOS

[40 74 05 41 42 43 44 00 00 00 00 19]

<06>
Write a FAT file 
‘ABCD’, 25 bytes, 
handshaking  5

OK, I’m ready

[31 32 33 34 35]

<06>Here’s the first  5

Give me the next  5

[36 37 38 39 30]

<06>
Then the next  5

And  5 more

And another  5 bytes

More Please

Thanks got it all

And other  5

Last time

5 more

[31 32 33 34 35]

<06>

[36 37 38 39 30]

<06>

[31 32 33 0D 0A]

<06>



GOLDELOX-DOS Command Set - Software Interface Specification

2.3.3 Erase File

Command ext_cmd, cmd, “file_name”, terminator

ext_cmd 40(hex) or @(ascii) : Extended Command header byte

cmd_hdr 65(hex) or e(ascii) : Command header byte

file_name The filename is 1-12 chars long with an assumed '.' between chars 8 
and 9, if there is not one specified the filename. 

terminator The file_name string must be terminated with a NULL, 00(hex)

Response acknowledge

acknowledge 06(hex) : ACK byte if file deleted sucessfully
15(hex) : NAK byte if file not found or an error has occured

Description Erases the file specified in the “file_name”. 

2.3.4 List Directory

Command ext_cmd, cmd, “file_name”, terminator

ext_cmd 40(hex) or @(ascii) : Extended Command header byte

cmd_hdr 64(hex) or d(ascii) : Command header byte

file_name The filename is 1-12 chars long with an assumed '.' between chars 8 
and 9, if there is not one specified the filename. Wild cards such as '*' 
and '?' are allowed.

terminator The file_name string must be terminated with a NULL, 00(hex)

Response “fileName1”, delimiter, .. , “fileNameN”, delimiter, acknowledge

fileName Character string of the file name in the memory card. Maximum of 12 
character bytes (including '.' seperator) are returned in the string for 
the file name. This  will  be repeated for all  files in the directory. An 
empty directory with no files or the result of an unsucessful file name 
or wild card search will only return an ACK.

Note: At  present  the  GOLDELOX-DOS  chip  only  supports  a  single 
directory  structure.  Future  enhancements  will  support  nested 
directories.

delimiter 0A(hex) : newline 

acknowledge 06(hex) : ACK byte if sucessful
15(hex) : NAK byte if an error has occured

Description Returns  a  directory  listing  (stream  of  characters)  consisting  of  the  files  names 
matching the “file_name” delimited by a Newline(0Ahex) character. Always responds 
with an ACK at the completion of a listing. Responds with a NAK if a file error occurs.

An empty directory with no files or the result of an unsucessful file name or wild card 
search will only return an ACK. 

2.3.5 Initialise Disk Drive Memory Card

Command ext_cmd, cmd

ext_cmd 40(hex) or @(ascii) : Extended Command header byte

© 2009 4D Labs www.4d-Labs.com Page 14 of 16



GOLDELOX-DOS Command Set - Software Interface Specification

cmd 69(hex) or i(ascii) : Command header byte

Response acknowledge

acknowledge 06(hex) : ACK byte if sucessful
15(hex) : NAK byte if unsucessful or card not present

Description This  command initialises  the memory card.  The memory card is  always initialised 
upon Power-Up or Reset cycle, if the card is present. If the card is inserted after the 
power up or a reset then this command must be used to initialise the card. 

If there is any FAT (FAT16 or FAT32) partition on the card, using this command will 
automatically protect the card and turn FAT Protection ON. This is implemented for 
safety reasons so that any important information in the card is not overwritten. The 
GOLDELOX-DOS device will not respond to any of the Low-Level (RAW) commands in 
this  section  until  FAT  protection  is  turned  OFF.  Use  the  “FAT  Protect”  command 
described in section 2.1.3. 

Note! There is no card insert/remove auto detect facility. This command is duplicated 
also in section 2.2. It is the same command, there is no difference.

© 2009 4D Labs www.4d-Labs.com Page 15 of 16



GOLDELOX-DOS Command Set - Software Interface Specification

Proprietory Information

The information contained in this document is the property of 4D Labs Pty. Ltd. and may be the subject of 
patents pending or granted, and must not be copied or disclosed with out prior written permission. 

4D Labs endeavours to ensure that the information in this document is correct and fairly stated but does 
not  accept  liability  for  any  error  or  omission.  The  development  of  4D  Labs  products  and  services  is 
continuous and published information may not be up to date. It is important to check the current position 
with 4D Labs.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Labs makes no warranty, either express or implied with respect to any product, and specifically disclaims 
all  other warranties,  including,  without limitation,  warranties for merchantability,  non-infringement and 
fitness for any particular purpose. 

Information contained in this publication regarding device applications and the like is provided only for your 
convenience and may be superseded by updates. It is your responsibility to ensure that your application 
meets with your specifications.

In no event shall 4D Labs be liable to the buyer or to any third party for any indirect, incidental, special,  
consequential, punitive or exemplary damages (including without limitation lost profits, lost savings, or loss 
of business opportunity) arising out of or relating to any product or service provided or to be provided by 
4D Labs, or the use or inability to use the same, even if 4D Labs has been advised of the possibility of such 
damages.

Use of 4D Labs’ devices in life support and/or safety applications is entirely at the buyer’s risk, and the 
buyer agrees to defend, indemnify and hold harmless 4D Labs from any and all damages, claims, suits, or 
expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any 4D Labs 
intellectual property rights.

Copyright 4D Labs Pty. Ltd. 2000-2009.

© 2009 4D Labs www.4d-Labs.com Page 16 of 16


	1. Host Interface
	1.1 Command Protocol : Flow Control
	1.2 Serial Setup : Auto-Baud
	1.3 Powerup and Reset

	2. Command Set
	2.1 General Commands
	2.1.1  Autobaud
	2.1.2  Version/Device Info Request
	2.1.3  FAT Protect

	2.2 Low-Level (RAW) Disk Drive Commands
	2.2.1  Initialise Disk Drive Memory Card
	2.2.2  Read Sector Block Data
	2.2.3  Write Sector Block Data
	2.2.4  Set Memory Address
	2.2.5  Read Byte Data
	2.2.6  Write Byte Data

	2.3 FAT-Level (DOS) Disk Drive Commands
	2.3.1  Read File
	2.3.2  Write File 
	2.3.3  Erase File
	2.3.4  List Directory
	2.3.5  Initialise Disk Drive Memory Card


	Proprietory Information
	Disclaimer of Warranties & Limitation of Liability

